ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Датчики загазованности SMART MT500

Назначение средства измерений

Датчики загазованности SMART MT500 предназначены для измерения довзрывоопасных концентраций горючих газов и объемной доли токсичных газов, кислорода и диоксида углерода в воздухе рабочей зоны, а также сигнализации о достижении заданных пороговых значений и передачи измерительной информации внешним устройствам.

Описание средства измерений

Принцип измерений датчиков SMART MT500 (далее - датчики) определяется типом установленного преобразователя газового (сенсора) и указан в таблице 1.

Таблица 1

т иолици т		
Обозначение	Определяемый компонент Принцип измерений	
преобразователя		
газового (сенсора)		
HC CAT	Взрывоопасные горючие газы	Каталитический
HC IR	Углеводороды	Инфракрасный
TX ECC	Токсичные газы, водород	Электрохимический
TX MOS	Сероводород	Полупроводниковый

Способ отбора пробы - диффузионный.

Датчики являются стационарными одно- или двухканальными приборами непрерывного действия.

Датчики выпускаются в двух основных модификациях:

- 1) одноканальная;
- 2) двухканальная.

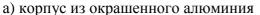
Каждая модификация может комплектоваться цифровым дисплеем или единичными LED-индикаторами.

Конструктивно датчики состоят из блока трансмиттера и подключаемого к нему блока преобразователя газового (сенсора), одного или двух, в зависимости от модификации. Сенсор может подключаться как непосредственно в оболочку трансмиттера через кабельный ввод, так и удаленно (до 300 м) с помощью удлинительного кабеля в соединительную коробку. Информационный обмен между блоками сенсора и трансмиттера осуществляется в цифровой форме, интерфейс RS485.

Корпус трансмиттера выполнен из алюминия или нержавеющей стали и состоит из нижней части, винтовой крышки со смотровым окном и электронного блока управления, расположенного внутри. Корпус сенсора выполнен из нержавеющей стали. Блок электроники имеет модульную структуру и может оснащаться дополнительными платами (HART, релейный выход и т.д.). Управление режимами работы детектора осуществляется бесконтактно с помощью специального магнитного инструмента, а также с помощью оригинального программного обеспечения «Settings Trancducer» (вне взрывоопасной зоны). Подключение сенсора и кабельных вводов осуществляется резьбовым соединением ³/₄" NPT (3X).

Датчики обеспечивают выходные сигналы:

- показания встроенного цифрового дисплея (при наличии);
- индикация о состоянии датчика с помощью единичных LED-индикаторов (при наличии);
- унифицированный аналоговый выходной токовый сигнал постоянного тока (4-20) мА;


- цифровой RS485, протокол Modbus TM RTU (по заказу, Modbus TM не доступен при наличии HART модуля);
 - 3 релейных выхода типа «сухой контакт» (по заказу);
 - цифровой HART (по заказу).

Датчик обеспечивает выполнение следующих основных функций:

- непрерывное измерение содержания определяемых компонентов;
- формирование унифицированного выходного аналогового токового сигнала постоянного тока (4 20) мА;
- формирование выходного цифрового сигнала RS-485, протокол Modbus $^{\rm TM}$ RTU (при наличии);
 - формирование релейных выходных сигналов;
 - формирование цифрового сигнала HART (при наличии).
- хранение градуировочных коэффициентов и прочих настроечных параметров во встроенной памяти датчика.

Общий вид датчиков приведен на рисунках 1 - 4. В зависимости от комплектации (например, вид монтажной коробки, защиты от внешних воздействующих факторов, адаптера для подачи Γ С и др.) внешний вид может отличаться.

б) корпус из нержавеющей стали

Рисунок 1 - Датчик модификации HC IR (оба трансмиттера в 2 - х канальной модификации)

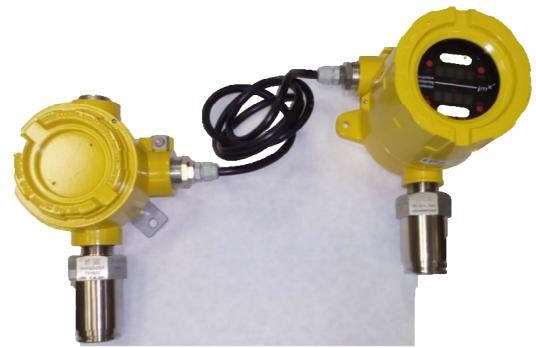


Рисунок 2 - Датчик модификации ТХ ЕСС в 2-х канальной модификации (дополнительный сенсор ТХ ЕСС подключен через распределительную коробку)

а) исполнение с цифровым дисплеем

б) исполнение с единичными LED-индикаторами

Рисунок 3 - Датчик модификации НС САТ

Рисунок 4 - Схема пломбировки датчиков от несанкционированного доступа

Программное обеспечение

Датчики имеют встроенное программное обеспечение (далее - ПО), разработанное изготовителем специально для решения задач измерения содержания определяемых компонентов (соответственно исполнению).

ПО детекторов обеспечивает следующие основные функции (в зависимости от модификации детектора):

- обработку и передачу измерительной информации от первичного измерительного преобразователя;
 - формирование выходного аналогового сигнала (4 20) мА;
 - формирование цифрового выходного сигнала HART; RS-485, протокол ModbusTM RTU;
 - формирование релейных выходных сигналов;
 - самодиагностику аппаратной части детектора;
 - настройку нулевых показаний и чувствительности детектора.
- хранение градуировочных коэффициентов и прочих настроечных параметров во встроенной памяти

ПО датчиков реализует следующие расчетные алгоритмы:

- 1) вычисление значений содержания определяемого компонента по данным от первичного измерительного преобразователя;
 - 2) вычисление значений выходного аналогового сигнала и цифрового HART;
- 3) сравнение текущих результатов измерений с заданными пороговыми уровнями срабатывания сигнализации;
 - 4) непрерывную самодиагностику аппаратной части датчика.
- ПО датчиков идентифицируется посредством отображения номера версии на дисплее при включении или информацией о версии встроенного ПО в паспорте датчика.

Влияние встроенного программного обеспечения учтено при нормировании метрологических характеристик датчиков.

Датчики имеют защиту встроенного программного обеспечения от преднамеренных или непреднамеренных изменений. Уровень защиты - «средний» по Р 50.2.077-2014.

Идентификационные данные программного обеспечения приведены в таблице 2.

Таблица 2 - Идентификационные данные встроенного программного обеспечения

Twomings = Tingenting in the name of the series of the series in the series of the ser	ior o inporpulation o occurs ionia.	
Идентификационные данные	Значение	
Идентификационное наименование ПО	S500MT Sensor	
Номер версии (идентификационный номер) ПО	6.0.10	
Цифровой идентификатор ПО	0xC6EB, алгоритм CRC16	
Другие идентификационные данные	48fa9d41cf821cbc2fa2bd3b43a96d55,	
(если имеются)	алгоритм MD5	
Примечание - номер версии программного обеспечения должен быть не ниже указанного		

Примечание - номер версии программного обеспечения должен быть не ниже указанного в таблице. Значение контрольной суммы указано для файла версии, указанной в таблице.

Метрологические и технические характеристики

Таблица 3 - Основные метрологические характеристики для датчиков с сенсорами НС САТ

Определяемый компонент	Диапазон измерений сод определяемого компоне	цержания	Пределы допускаемой основной абсолютной
	довзрывоопасная концентрация, % НКПР	объемная доля, %	погрешности, % НКПР
метан (СН ₄)		от 0 до 2,2	±5
этан (С ₂ Н ₆)		от 0 до 1,25	±5
ацетилен (C_2H2)		от 0 до 1,15	±5
пропан (С ₃ Н ₈)		от 0 до 0,85	±5
бутан (н-С ₄ Н ₁₀)		от 0 до 0,7	±5
изобутан (и-С ₄ H ₁₀)	от 0 до 50	от 0 до 0,65	±5
гексан (С ₆ Н ₁₄)	01 0 до 30	от 0 до 0,5	±5
водород (Н2)		от 0 до 2,0	±5
метанол (СН ₃ ОН)		от 0 до 2,75	±5
этанол (C_2H_5OH)		от 0 до 1,55	±5
водород (Н2)		от 0 до 2,0	±5
бензол (C_6H_6)		от 0 до 0,6	±5
толуол $(C_6H_5CH_3)^*$	от 0 до 36	от 0 до 0,4	±5
ацетон(СН ₃ СОСН ₃)		от 0 до 1,25	±5
пропилен(С ₃ Н ₆)	от 0 до 50	от 0 до 1,0	±5
этилен (C_2H_4)	от о до зо	от 0 до 1,15	±5
пентан (C_5H_{12})		от 0 до 0,7	±5

Примечания:

- 1) Диапазон показаний по всем определяемым компонентам от 0 до 100 % НКПР.
- 2) Значения НКПР горючих газов и паров горючих жидкостей указаны в соответствии с ГОСТ 30852.19-2002.
- 3) Ввиду того, что датчики обладают чувствительностью к широкой номенклатуре органических и неорганических горючих веществ, пределы допускаемой основной погрешности нормированы только для смесей, содержащих только один горючий компонент.

Таблица 4 - Основные метрологические характеристики для датчиков с сенсорами HC IR

Тип	Определяемый	_	диапазон Диаган	Пределы дог	
преобра-	компонент	показаний	измерений	основной по	•
зователя	ROMITOTICIT	объемной доли	объемной доли	основной но	Грешности
(сенсора)		определяемого	определяемого		
(cencopa)		компонента	компонента		
		(довзрывоопасной	(довзрывоопасной		относи-
		концентрации)	•	абсолютной	тельной, %
HC IR -	CH ₄	От 0 до 4,4 %	концентрации) От 0 до 2,2 %	±5 % НКПР	тельной, 70
	СП4	(от 0 до 4,4 %		±3 % HKHI	- 10
метан			ВКЛЮЧ.	-	±10
IIC ID	CH	НКПР)	Св. 2,2 до 4,4 %	+5 0/ 111/TID	
HC IR -	C_3H_8	От 0 до 1,7 %	От 0 до 0,85 %	±5 % НКПР	- 10
пропан		(от 0 до 100 %	включ.	-	±10
HC ID	CH	НКПР)	Св. 0,85 до 1,7 %	5 of HIGHD	
HC IR -	C_6H_{14}	От 0 до 1,0 %	От 0 до 0,5 %	±5 % НКПР	-
гексан		(от 0 до 100 %	включ.	-	±10
****	G **	НКПР)	Св. 0,5 до 1,0 %	7 at 111117D	
HC IR -	C_2H_2	От 0 до 2,3 %	От 0 до 1,15 %	±5 % НКПР	-
ацетилен		(от 0 до 100 %	включ.	-	±10
		НКПР)	Св. 1,15 до 2,3 %		
HC IR -	C_2H_6	От 0 до 2,5 %	От 0 до 1,25 %	±5 % НКПР	-
этан		(от 0 до 100 %	включ.	-	±10
		НКПР	Св. 1,25 до 2,5 %		
HC IR -	н-С ₄ Н ₁₀	От 0 до 1,4 %	От 0 до 0,7 %	±5 % НКПР	-
бутан		(от 0 до 100 %	включ.	-	±10
		НКПР)	Св. 0,7 до 1,4 %		
HC IR -	и-С ₄ Н ₁₀	От 0 до 1,3 %	От 0 до 0,65 %	±5 % НКПР	-
изобутан		(от 0 до 100 %	включ.	-	±10
		НКПР)	Св. 0,65 до 1,3 %		
HC IR -	C_5H_{12}	От 0 до 1,4 %	От 0 до 0,7 %	±5 % НКПР	-
пентан		(от 0 до 100 %	включ.	-	±10
		НКПР)	Св. 0,7 до 1,4 %		
HC IR -	C_3H_6	От 0 до 2,0 %	От 0 до 1,0 %	±5 % НКПР	-
пропилен		(от 0 до 100 %	включ.	-	±10
•		НКПР)	Св. 1,0 до 2,0 %		
HC IR -	CH ₃ OH	От 0 до 5,55 %	От 0 до 2,75 %	±5 % НКПР	-
метиловый		об.д.	об.д.включ.	_	±10
спирт		(от 0 до 100 %	Св. 2,75 до 5,5 %		
· r		НКПР	, , , , , , , , , , , , , , , , , , , ,		
HC IR -	C ₂ H ₅ OH	От 0 до 3,1 %	От 0 до 1,55 %	±5 % НКПР	-
этиловый	2-3-4	об.д.	включ.		
спирт		(от 0 до 100 %			
r		НКПР)			
HC IR -	C ₂ H ₄	От 0 до 2,3 %	От 0 до 1,15 %	±5 % НКПР	_
этилен	224	об.д.	включ.		±10
		(от 0 до 100 %	Св. 1,15 до 2,3 %		
		НКПР)	25. 1,15 AO 2,5 70		
	ĺ	/	İ	İ	

Тип	Определяемый	Диапазон	Диапазон	Пределы дог	гускаемой
преобра-	компонент	показаний	измерений	основной погрешности	
зователя		объемной доли	объемной доли		
(сенсора)		определяемого	определяемого		
		компонента	компонента		
		(довзрывоопасной	(довзрывоопасной		относи-
		концентрации)	концентрации)	абсолютной	тельной, %
HC IR -	$C_6H_5CH_3$	От 0 до 0,4 %	От 0 до 0,4 %	±5 % НКПР	-
толуол		об.д.	включ.		
		(от 0 до 36 %			
		НКПР)			
HC IR -	C_6H_6	От 0 до 1,2 %	От 0 до 0,6 %	±5 % НКПР	-
бензол		об.д.	включ.	-	±10
		(от 0 до 100 %	Св. 0,6 до 1,2 %		
		НКПР)			
HC IR -	CH ₃ COCH ₃	От 0 до 2,5 %	От 0 до 1,25 %	±5 % НКПР	-
ацетон		об.д.	включ.		
		(от 0 до 100 %			
		НКПР)			
HC IR -	CO_2	От 0 до 2 %	От 0 до 2 %	$\pm (0.03+0.05C_{\rm X})$	-
диоксид				% об.д.	
углерода		От 0 до 5 %	От 0 до 5 %	$\pm (0.03+0.05C_{\rm X})$	-
				% об.д.	

Примечания:

- 1) Диапазон показаний по всем определяемым компонентам кроме диоксида углерода от 0 до 100~% НКПР.
- 2) Значения НКПР горючих газов и паров горючих жидкостей указаны в соответствии с ГОСТ 30852.19-2002.
- 3) Ввиду того, что датчики обладают чувствительностью к широкой номенклатуре органических и неорганических горючих веществ, пределы допускаемой основной погрешности нормированы только для смесей, содержащих только один горючий компонент.
 - 4) Сх значение содержания диоксида углерода на входе датчика, объемная доля, %

Таблица 5 - Основные метрологические характеристики для датчиков с сенсорами TX MOS

	<u> </u>			
Определяемый	Диапазон показаний	Диапазон измерений	Пределы допускаемой	
компонент	объемной доли	объемной доли	основной погрешности	
	определяемого	определяемого	приведенной 2), %	относительной, %
	компонента 1)	компонента		
сероводород	от 0 до 50 млн ⁻¹	от 0 до 7 млн ⁻¹	±15	-
(H_2S)		включ.		
		св. 7 до 50 млн ⁻¹	-	±15

Примечания:

¹⁾ Номинальное значение единицы наименьшего разряда цифрового дисплея 0,1 млн⁻¹.

2) к верхней границе поддиапазона измерений.

Таблица 6 - Основные метрологические характеристики для датчиков с сенсорами ТХ ЕСС

· ·	<u> </u>	л		
Определяемый	Диапазон	Диапазон измерений	_	цопускаемой
компонент	показаний	объемной доли		погрешности
	объемной доли	определяемого	приведеннои, %	относительной, %
	определяемого	компонента		
	компонента		1.5	
Сероводород	от 0 до 50 млн ⁻¹	от 0 до 7 млн ⁻¹ включ.	±15	
(H_2S)		св. 7 до 50 млн^{-1}		
	1			±15
	от 0 до 100 млн ⁻¹	от 0 до 7 млн ⁻¹	±15	
		включ.		
		св. 7 до 100 млн ⁻¹		±15
	от 0 до 200 млн ⁻¹	от 0 до 7 млн $^{ ext{-}1}$	±15	
		включ.		
		св. 7 до 200 млн ⁻¹		±15
Фосфин (РН ₃)*	от 0 до 5 млн ⁻¹	от 0 до 5 млн ⁻¹	±15	-
	от 0 до 500 млн ⁻¹	от 0 до 5 млн ⁻¹	±15	
		включ.		
		св. 5 до 500 млн ⁻¹		±15
	от 0 до 1000 млн ⁻¹	от 0 до 5 млн ⁻¹	±15	
		включ.		
		св. 5 до 1000 млн ⁻¹		±15
Водород (Н2)	от 0 до 100 млн ⁻¹	от 0 до 100 млн ⁻¹	±15	_
- *A*F *A (*-2)	от 0 до 1000 млн ⁻¹	от 0 до 100 млн ⁻¹	±15	
	01 0 Д0 1000 11111	включ.		
		Св. 100 до 1000 млн ⁻¹		±15
Оксид углерода	от 0 до 20 млн ⁻¹	от 0 до 20 млн ⁻¹	±15	-
(CO)	от 0 до 100 млн ⁻¹	от 0 до 17,8 млн ⁻¹	±15	
(00)	от о до тоо мыш	включ.	_13	
		Св. 17,8 до 100 млн ⁻¹		±15
	от 0 до 200 млн ⁻¹	От 0 до 17,8 млн ⁻¹	±15	<u> </u>
	01 0 до 200 млп	включ.	_13	
		Св. 17,8 до 200 млн ⁻¹		±15
	от 0 до 1000 млн ⁻¹	от 0 до 17,8 млн ⁻¹	±15	113
	от о до тооо млн	включ.	_13	
		св. 17,8 до 1000 млн ⁻¹		±15
Диоксид азота*	от 0 до 20 млн ⁻¹	от 0 до 20 млн ⁻¹	±20	<u> </u>
(NO ₂)	от о до 20 млн	от о до 20 млн	±∠0	-
Диоксид серы	от 0 до 20 млн ⁻¹	от 0 до 3,8 млн ⁻¹	±15	
(SO ₂)	от одо 20 млн	от о до 5,6 млн включ.	<u> </u>	
$(3O_2)$		св. 3,8 до 20 млн ⁻¹		±15
	от 0 до 100 млн ⁻¹		. 15	±13
	от о до тоо млн	от 0 до 3,8 млн ⁻¹	±15	
		ВКЛЮЧ.		.15
		св. 3,8 до 100 млн ⁻¹		±15

Определяемый	Диапазон	Диапазон измерений	_	цопускаемой
компонент	показаний	объемной доли		погрешности
	объемной доли	определяемого	приведенной, %	относительной, %
	определяемого	компонента		
	компонента			
Аммиак (NH ₃)	от 0 до 100 млн ⁻¹	от 0 до 28,3 млн ⁻¹	±15	
		включ.		
		св. 28,3 до 100 млн ⁻¹		±15
	от 0 до 1000 млн ⁻¹	от 0 до 28,3 млн ⁻¹	±15	
		включ.		
		св. 28,3 до 1000 млн ⁻¹		±15
Хлор (Cl ₂)*	от 0 до 20 млн ⁻¹	от 0 до 20 млн $^{-1}$	±20	-
1 \ -/	от 0 до 50 млн ⁻¹	от 0 до 20 млн ⁻¹	±20	
	, ,	включ.		
		св. 20 до 50 млн ⁻¹		±20
	от 0 до 200 млн ⁻¹	от 0 до 20 млн ⁻¹	±20	
	от о до 200 млн	включ.	_20	
		св. 20 до 200 млн ⁻¹		±20
	от 0 до 5000 млн ⁻¹	от 0 до 20 млн ⁻¹	±20	<u> </u>
	01 0 до 3000 млп	включ.	-20	
		св. 20 до 5000 млн ⁻¹		±20
Хлорид водо-	от 0 до 20 млн ⁻¹	от 0 до 3,3 млн ⁻¹	±20	-20
-	от о до 20 млн			
рода (HCl)		включ.		±20
	200	св. 3,3 до 20 млн ⁻¹	120	±20
	от 0 до 200 млн ⁻¹	от 0 до 3,3 млн ⁻¹	±20	
		включ.		. 20
	0 1000 -	св. 3,3 до 200 млн ⁻¹	20	±20
	от 0 до 1000 млн ⁻¹	от 0 до 3,3 млн ⁻¹	±20	
		включ.		• •
	1	св. 3,3 до 1000 млн ⁻¹		±20
Формальдегид	от 0 до 10 млн ⁻¹	от 0 до 10 млн $^{-1}$	±20	-
* (CH ₂ O)	1			
Оксид азота	от 0 до 25 млн ⁻¹	от 0 до $4,0$ млн $^{-1}$	±15	
(NO)		включ.		
		св. 4,0 до 25 млн ⁻¹		±15
	от 0 до 100 млн ⁻¹	от 0 до 4 , 0 млн $^{-1}$	±15	
		включ.		
		св. 4,0 до 100 млн ⁻¹		±15
Оксид этилена*	от 0 до 20 млн ⁻¹	от 0 до 20 млн ⁻¹	±15	-
(C_2H_4O)				
Этилен (C ₂ H ₄)	от 0 до 10 млн ⁻¹	От 0 до 10 млн ⁻¹	±15	_
- (-2)	, ,	r 1		
	от 0 до 200 млн ⁻¹	от 0 до 86млн ⁻¹	±15	
	от о до 200 ман	включ.		
		св.86 до 200 млн ⁻¹		±15
	от 0 до 1500 млн ⁻¹	от 0 до 86 млн ⁻¹	±15	<u>-13</u>
	от о до 1500 млн	от о до во млн включ.		
		включ. св.86 до 1500 млн ⁻¹		±15
	<u> </u>	св.оо до 1300 млн		±1 <i>J</i>

Определяемый	Диапазон	Диапазон измерений	Пределы допускаемой	
компонент	показаний	объемной доли	основной погрешности	
	объемной доли	определяемого	приведенной, %	относительной, %
	определяемого	компонента		
	компонента			
Цианистый во-	от 0 до 100 млн ⁻¹	от 0 до 10 млн ⁻¹	±20	
дород (НСП) *		включ.		
		св 10 до 100 млн ⁻¹		±20

Примечания:

- 1) *- не предназначены для контроля ПДК рабочей зоны, только для контроля аварийных выбросов.
 - 2) Номинальное значение единицы наименьшего разряда цифрового дисплея 0,1 млн⁻¹.

Таблица 7 - Метрологические характеристики датчиков

Таолица 7 - Метрологические характеристики датчиков	Quanaviva
Наименование	Значение
Предел допускаемой вариации выходного сигнала газоанализатора,	0,5
в долях от предела допускаемой основной погрешности	
Предел допускаемого изменения показаний при непрерывной работе	0,5
в течение 8 ч, в долях от предела допускаемой основной погрешности	
Пределы допускаемой дополнительной погрешности газоанализатора	$\pm 0,2$
от изменения температуры окружающей среды на каждые 10 °C	
в диапазоне рабочих условий эксплуатации, в долях от предела	
допускаемой основной погрешности	
Пределы допускаемой дополнительной погрешности от влияния	$\pm 0,5$
изменения относительной влажности окружающей среды в диапазоне	
от 60 до 0 % и от 60 до 99 %, в долях от предела допускаемой основной	
погрешности	
Предел допускаемого времени установления выходного сигнала	
детектора $T_{0,9\pi}$ в зависимости от сенсора	
HC CAT	20
HC IR	10
TX ECC	60
TX MOS	30
Время прогрева датчика, мин, не более	4
Примечание: * - при ускоренной процедуре запуска датчика	
загазованности	

Таблица 8 - Основные технические характеристики датчиков

Наименование	Значение
Электрическое питание датчиков осуществляется постоянным током	от 15 до 30
напряжением, В	
Потребляемая мощность, Вт, не более	1,5
Средняя наработка на отказ, ч	10 000
Датчики выполнены во взрывозащищенном исполнении вид взрыво-	1Ex d IIC T5/T6 Gb X
защиты "взрывонепроницаемая оболочка", маркировка взрывозащиты	
Степень защиты от внешних воздействий по ГОСТ 14254-96, не ниже:	
- трансмиттер	IP66
- сенсор	IP65

T	
Таолина 9 -	Габаритные размеры и масса элементов датчиков

Обозначение	Габаритные разм	сор), мм,	Масса, кг,	
	не более		не более	
	Ширина	Высота	Глубина	
SMART MT500,	145	224	129	1,6
алюминиевый корпус				
SMART MT500, корпус	145	224	129	3,0
из нержавеющей стали				
SMART MT500, коробка	145	205	93	1,6
распределительная				
для удаленного сенсора				

Таблица 10 - Условия эксплуатации датчиков

Tuominga To V enobin onemi jaranim gar mnob						
Обозначение сенсора	Диапазон температуры	Диапазон относительной				
	окружающей и анализируемой	влажности окружающей				
	сред, °С	среды при температуре				
		35 °C, %				
HC CAT	от - 40 до + 80	от 0 до 99				
HC IR	от - 40 до + 80	от 0 до 95				
TX ECC	от - 40 до + 60	от 15 до 95				
TX MOS	от - 40 до + 65	от 0 до 95				

Знак утверждения типа

наносится на лицевую сторону корпуса датчика методом наклейки и на титульный лист Руководства по эксплуатации типографским методом.

Комплектность средства измерений

Таблица 11 - Комплектность средства измерений

тионици 11 поминентность средства померении	
Наименование	Количество
Детектор загазованности SMART MT500 (сенсор по заказу)	1 шт.
Магнит для настройки детектора	1 шт.
Руководство по эксплуатации	1 экз.
Методика поверки МП-242-2114-2017	1 экз.

Поверка

осуществляется по документу МП-242-2114-2017 «Датчики загазованности SMART MT500. Методика поверки», утвержденному Φ ГУП «ВНИИМ им. Д.И. Менделеева» 15.06.2017 г.

Основные средства поверки:

	- стандартны	ые обр	разцы состав	а газо	овые смеси	(ГСО	10257-2013,	ГСО	10263-2013,
ГСО	10325-2013,	ГСО	10386-2013,	ГСО	10244-2013,	ГСО	10246-2013,	ГСО	10333-2013,
ГСО	10364-2013,	ГСО	10250-2013,	ГСО	10540-2014,	ГСО	10248-2013,	ГСО	10368-2013,
ГСО	10366-2013,	ГСО	10385-2013,	ГСО	10325-2013,	ГСО	10329-2013,	ГСО	10348-2013,
ГСО	10259-2013,	ГСО	10242-2013,	ГСО	8370-2003,	ГСО	10331-2013,	ГСО	10342-2013,
ГСО	10327-2013,	ГСО	10371-2013,	ГСО	10323-2013,	ГСО	10387-2013,	ГСО	10248-2013,
ГСО	10376-2013,	ГСО	10256-2013,	ГСО	10262-2013,	ГСО	10334-2013,	ГСО	10379-2013,
ГСО	10243-2013,	ГСО	10245-2013,	ГСО	10332-2013,	ГСО	10378-2013,	ГСО	10249-2013,
ГСО	10248-2013,	ГСО	10368-2013,	ГСО	10367-2013,	ГСО	10241-2013,	ГСО	10535-2014)
в баллонах под давлением;									

- рабочий эталон 1-го разряда генератор газовых смесей ГГС (исполнение ГГС-Р, ГГС-К) (регистрационный номер 62151-15) в комплекте со стандартными образцами газовых смесей в баллонах под давлением;
- рабочий эталон 1-го разряда генератор газовых смесей генератор ГГС (исполнение ГГС-Т, ГГС-К) (регистрационный номер 62151-15) в комплекте с источниками микропотока ИМ СІ ИМ09-М-А2, ИМ НҒ ИМ130-М-А2.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых датчиков загазованности с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и/или на корпус датчика.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к датчикам загазованности SMART MT500

ГОСТ 8.578-2014 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.

ГОСТ Р 52350.29-1-2010 Взрывоопасные среды. Часть 29-1. Газоанализаторы. Общие технические требования и методы испытаний газоанализаторов горючих газов.

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

Техническая документация изготовителя «IMX S.r.l.», Италия.

Изготовитель

Фирма «IMX S.r.l.», Италия

Адрес: via Piemonte, 17/19, Cinisello Balsamo (MI),20092, Italy

Телефон: +39 023 6570500, факс: +39 023 6570501

Web-сайт: http://www.imxsrl.com

E-mail: info@imxsrl.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес:190005, г. Санкт-Петербург, Московский пр., 19

Телефон: (812) 251-76-01, факс: (812) 713-01-14

Web-сайт <u>www.vniim.ru</u> E-mail info@vniim.ru

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2017 г.