ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Генераторы сигналов SMA100B

Назначение средства измерений

Генераторы сигналов SMA100B предназначены для формирования немодулированных СВЧ колебаний, а также колебаний с различными видами модуляций.

Описание средства измерений

Принцип действия генераторов сигналов SMA100B основан на формировании базового диапазона частот синтезатором высокой частоты и расширении его вниз и вверх в устройстве формирования выходного сигнала. Источником опорной частоты для синтезатора высокой частоты служит кварцевый генератор с частотой 10 МГц. Уровень выходного сигнала генератора регулируется аттенюатором и контролируется системой автоматической регулировки уровня. Для формирования сигналов с различными видами модуляции генератор может быть оснащен импульсным модулятором и модулятором для амплитудной, частотной и фазовой модуляций, а также источниками модулирующих сигналов.

Конструктивно генераторы сигналов SMA100B выполнены в виде настольного лабораторного прибора. Управление генераторами сигналов SMA100B осуществляется с передней панели, оснащенной дисплеем и кнопочным табло, или по интерфейсу дистанционного управления с помощью внешнего ПЭВМ. Разъем выхода СВЧ, входы и выходы сигналов опорной частоты, входы и выходы модулирующих сигналов в зависимости от исполнения генератора могут находиться как на передней, так и на задней панели. Генераторы сигналов SMA100B оснащены интерфейсами LAN и опционально USB, GPIB.

Генераторы сигналов SMA100B имеют следующие опции:

В92 - опция корпуса с низким профилем;

В93 - опция корпуса с высоким профилем;

В103/В106/В112/В120 - опции диапазона частот до 3 ГГц/6 ГГц/12,75 ГГц/20 ГГц;

В1Н - опция опорного генератора повышенной точности;

В710 - опции улучшения фазовых шумов в ближней зоне для В106, В112, В120;

B710N - опция улучшения фазовых шумов в ближней зоне для B103;

В711 - опции низких фазовых шумов для В106, В112, В120;

B711N - опция низких фазовых шумов для B103;

К31 - опция повышенной выходной мощности до 3/6 ГГц;

В32 - опция большой выходной мощности до 3/6 ГГц;

К33 - опция повышенной выходной мощности до 12,75/20 ГГц;

ВЗ4 - опция большой выходной мощности до 12,75/20 ГГц;

К22 - опция импульсного модулятора;

К23 - опция импульсного генератора;

К24 - опция модулирующего генератора сигналов произвольной формы;

К720 - опция модулятора АМ/ЧМ/ФМ;

К703 - опция входа и выхода опорных частот 100 МГц и 1 ГГц;

В80 - опция разъема СВЧ выхода на задней панели до 3/6 ГГц;

В81 - опция разъема СВЧ выхода на задней панели до 12,75/20 ГГц;

B86 - опция удаленного управления по GPIB и USB.

Генераторы сигналов SMA100B, в зависимости от установленных опций, отличаются высотой корпуса. Общий вид генераторов сигналов SMA100B, обозначение места нанесения знака утверждения типа средства измерения и знака поверки приведены на рисунке 1.

Схема пломбировки от несанкционированного доступа приведена на рисунке 2.

место пломбировки от

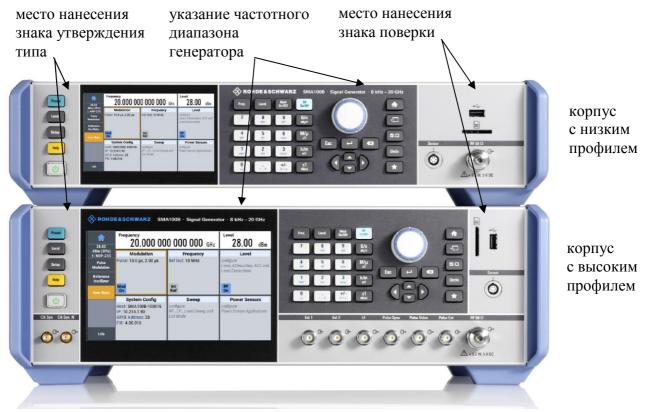


Рисунок 1 - Общий вид средства измерений

несанкционированного доступа

Рисунок 2 - Схема пломбировки от несанкционированного доступа

Программное обеспечение

Идентификационные данные программного обеспечения генераторов сигналов SMA100B приведены в таблице 1.

Программное обеспечение реализовано без выделения метрологически значимой части. Влияние программного обеспечения не приводит к выходу метрологических характеристик генераторов сигналов SMA100B за пределы допускаемых значений.

Уровень защиты программного обеспечения «низкий» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные программного обеспечения (ПО)

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	FW SMA100B
Номер версии (идентификационный номер) ПО	4.15.010.12 и выше
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

приведены в таблицах 2 - 10.

Таблица 2 - Частотные параметры

таолица 2 настотные нараметры			
Наименование характері	Значение		
Диапазон частот, Гц	опция В103	от $8 \cdot 10^3$ до $3 \cdot 10^9$	
	опция В106	от 8·10 ³ до 6·10 ⁹	
	опция В112	от $8 \cdot 10^3$ до $12,75 \cdot 10^9$	
	опция В120	от $8 \cdot 10^3$ до $20 \cdot 10^9$	
Дискретность установки частоты, Гц	Дискретность установки частоты, Гц		
Выход/выход опорной частоты, Гц	штатно	$1 \cdot 10^6$	
	опция К703	$1 \cdot 10^6, 1 \cdot 10^8, 1 \cdot 10^9$	
Пределы допускаемой относительной	штатно	±1·10 ⁻⁷	
погрешности установки частоты бf при	опции В1Н/В710/	±3·10 ⁻⁸	
работе от внутренней опорной частоты	B710N/B711/B711N		

Таблица 3 - Параметры уровня выходного сигнала

Наимено	Значение		
1			2
Диапазон установки	штатно	от 100 кГц до 1 МГц включ.	от -127 до +13
значений уровня выходного		св. 1 МГц до 6 ГГц включ.	от -127 до +19
сигнала для опций	опция К31	от 100 кГц до 1 МГц включ.	от -127 до +13
В103/В106 в зависимости		св. 1 МГц до 6 ГГц включ.	от -127 до +25
от частоты, дБмВт**	опции К31	от 100 кГц до 1 МГц включ.	от -127 до +13
	и В32	св. 1 МГц до 8 МГц включ.	от -127 до +25
		св. 8 МГц до 6 ГГц включ.	от -127 до +30
Диапазон установки	штатно	от 100 кГц до 1 МГц включ.	от -127 до +13
значений уровня выходного		св. 1 МГц до 6 ГГц включ.	от -127 до +18
сигнала для опций		св. 6 ГГц до 13 ГГц включ.	от -127 до +18
В112/В120 в зависимости		св. 13 ГГц до 20 ГГц включ.	от -127 до +17
от частоты, дБмВт	опция К33	от 100 кГц до 1 МГц включ.	от -127 до +13
		св. 1 МГц до 6 ГГц включ.	от -127 до +23
		св. 6 ГГц до 20 ГГц включ.	от -127 до +20
	опции К33	от 100 кГц до 1 МГц включ.	от -127 до +13
	и В34	св. 1 МГц до 8 МГц включ.	от -127 до +25
		св. 8 МГц до 6 ГГц включ.	от -127 до +28
		св. 6 ГГц до 8 ГГц включ.	от -127 до +26
		св. 8 ГГц до 18 ГГц включ.	от -127 до +27
		св. 18 ГГц до 20 ГГц включ.	от -127 до +24

Продолжение таблицы 3

1			
	2		
Дискретность установки уровня выходного сигнала, дБ			0,01
Пределы допускаемой	до минус	от 100 кГц до 8 МГц включ.	±1,2
абсолютной погрешности	90 дБмВт	св. 8 МГц до 3 ГГц включ.	±0,8
установки уровня	включ.	св. 3 ГГц до 20 ГГц включ.	±1,2
выходного сигнала, дБ	от минус 90	от 100 кГц до 8 МГц включ.	±1,0
	до 25 дБмВт	св. 8 МГц до 3 ГГц включ.	±0,5
	вкл.	св. 3 ГГц до 20 ГГц включ.	±0,9
	св. 25 дБмВт	от 8 МГц до 18 ГГц	±1,0
КСВН выхода ВЧ, не более			2,0
Тип выходного разъема		опции В103/В106	N «розетка»
		опции В112/В120	2,92 мм «розетка»

Примечания

Таблица 4 - Параметры спектра выходного сигнала в режиме непрерывных колебаний

гаолица 4 - Параметры спектра выходного сигнала в режиме непрерывных колеоании				
Наименов	Значение			
	1		2	
Уровень гармонических	B103/B106	от 100 кГц до 10 МГц включ.	-30	
составляющих для уровня		св. 10 МГц до 6 ГГц включ.	-60	
выходного сигнала	B112/B120	от 100 кГц до 10 МГц включ.	-30	
менее 10 дБмВт, дБ		св. 10 МГц до 20 ГГц включ.	-55	
относительно несущей,				
не более:				
Уровень негармонических	штатно	до 750 МГц включ.	-96	
составляющих для уровня		св. 750 МГц до 1,5 ГГц включ.		
выходного сигнала		св. 1,5 ГГц до 3 ГГц включ.	-86	
менее 10 дБмВт при отстройках		св. 3 ГГц до 6 ГГц включ.	-80	
от несущей свыше 10 кГц, дБ		св. 6 ГГц до 12 ГГц включ.	-74	
относительно несущей,		св. 12 ГГц до 20 ГГц включ.	-68	
не более	опция В711	до 1,5 ГГц включ.	-100	
	или B711N	св. 1,5 ГГц до 3 ГГц включ.	-94	
		св. 3 ГГц до 6 ГГц включ.	-88	
		св. 6 ГГц до 12 ГГц включ.	-82	
		св. 12 ГГц до 20 ГГц включ.	-76	
Спектральная плотность	штатно	10 МГц	-158	
мощности фазовых шумов при		100 МГц	-154	
отстройке от несущей 20 кГц		1 ГГц	-135	
и уровне сигнала 10 дБмВт		2 ГГц	-129	
в зависимости от частоты		3 ГГц	-125	
несущей, дБ относительно		4 ГГц	-123	
несущей в полосе 1 Гц, не более		6 ГГц	-119	
		10 ГГц	-115	
		20 ГГц	-109	
	опции В710	или B710N	приведены	
			в таблице 5	
	опции В711	или B711N	приведены	
			в таблице 6	

^{*} диапазон установки значений уровня выходного сигнала не нормируется для опций B80/B81

^{**} здесь и далее: дБмВт - дБ относительно 1 мВт

Таблица 5 - Спектральная плотность мощности фазовых шумов для опции B710/B710N при уровне сигнала 10 дБмВт в зависимости от частоты несущей и отстройки, дБ относительно несущей в полосе 1 Гц, не более

met jagen a nemet	,						
Частота	Частота отстройки ΔF						
несущей F	10 Гц	100 Гц	1 кГц	10 кГц	100 кГц	1 МГц	10 МГц
10 МГц	-124	-136	-147	-157	-160	-161	-
100 МГц	-117	-129	-144	-153	-155	-162	-162
1 ГГц	-97	-111	-131	-135	-135	-145	-160
2 ГГц	-91	-105	-125	-129	-129	-139	-159
3 ГГц	-87	-101	-121	-125	-125	-136	-159
4 ГГц	-86	-99	-119	-123	-123	-133	-157
6 ГГц	-81	-95	-115	-119	-119	-131	-156
10 ГГц	-77	-91	-111	-115	-115	-124	-148
20 ГГц	-71	-85	-105	-109	-109	-118	-142

Таблица 6 - Спектральная плотность мощности фазовых шумов для опции B711/B711N при уровне сигнала 10 дБмВт в зависимости от частоты несущей и отстройки, дБ относительно несущей в полосе 1 Гц, не более

песущен в немес							
Частота	Частота отстройки ΔF						
несущей F	10 Гц	100 Гц	1 кГц	10 кГц	100 кГц	1 МГц	10 МГц
10 МГц	-124	-136	-147	-157	-160	-161	-
100 МГц	-117	-129	-146	-155	-162	-162	-162
1 ГГц	-97	-111	-135	-147	-148	-157	-160
2 ГГц	-91	-105	-129	-142	-142	-151	-159
3 ГГц	-87	-101	-125	-138	-138	-148	-159
4 ГГц	-86	-99	-122	-135	-136	-147	-157
6 ГГц	-81	-95	-119	-132	-132	-144	-155
10 ГГц	-77	-91	-115	-128	-128	-140	-156
20 ГГц	-71	-85	-109	-122	-122	-134	-148

Таблица 7 - Параметры выходного сигнала в режиме внутренней импульсной модуляции (опции K22 и K23)

(01141111111111111111111111111111111111	
Наименование характеристики	Значение
Диапазон установки периода следования импульсов модулирующего	от 20·10 ⁻⁹ до 100
генератора, с	
Диапазон установки длительности импульсов модулирующего	от 5·10 ⁻⁹ до 100
генератора, с	
Дискретность установки длительности и периода, нс	5
Минимальная длительность радиоимпульсов, нс, не более	20
Время нарастания/спада радиоимпульса, нс, не более	10
Коэффициент подавления сигнала несущей в паузе между	80
радиоимпульсами, дБ, не менее	

Таблица 8 - Параметры выходного сигнала в режиме внутренней амплитудной модуляции (опции K720 и K24)

Наименование характеристики	Значение
Диапазон установки коэффициента амплитудной модуляции, %	от 0 до 100
Дискретность установки коэффициента амплитудной модуляции, %	0,01
Пределы допускаемой абсолютной погрешности установки коэффи-	$\pm (0.03 \cdot M + 1)$
циента амплитудной модуляции М при модулирующей частоте 1 кГц	
и М < 80 %, %	
Коэффициент гармоник огибающей в режиме амплитудной модуляции	2,0
при глубине модуляции 80 % и модулирующей частоте 1 кГц, %,	
не более	
Диапазон модулирующих частот для АМ, Гц	от 10 до 100·10 ³

Таблица 9 - Параметры выходного сигнала в режиме внутренней частотной модуляции (опции K720 и K24)

(61141111 11/20 11 112 1)		
Наименовани	Значение	
Максимальная устанавливаемая	до 350 МГц включ.	5
девиация частоты в зависимости	св. 350 МГц до 375 МГц включ.	2,5
от частоты несущей, МГц	св. 375 МГц до 750 МГц включ.	5
	св. 750 МГц до 1,5 ГГц включ.	10
	св. 1,5 ГГц до 3 ГГц включ.	20
	св. 3 ГГц до 6 ГГц включ.	40
	св. 6 ГГц до 12 ГГц включ.	80
	св. 12 ГГц до 20 ГГц включ.	160
Дискретность установки девиаци	0,02	
Пределы допускаемой абсолютн	$\pm (0.015 \cdot F_{\pi} + 20)$	
частоты Гд при модулирующей ч	, , ,	
Коэффициент гармоник огибаюц	0,1	
при модулирующей частоте 10 к		
Диапазон модулирующих частот	для частотной модуляции, Гц	от 10 до 10·10 ⁶

Таблица 10 - Основные технические характеристики

Наименование характери	Значение	
Рабочие условия эксплуатации:		
- температура окружающего воздуха, °С		от 0 до +55
- относительная влажность воздуха при темпер	ратуре 40 °C, %, не более	85
Условия хранения и транспортирования:		
- температура окружающего воздуха, °С		от -40 до +70
- относительная влажность воздуха при темпер	95	
Напряжение питания от сети переменного тока	230±23	
Потребляемая мощность, Вт, не более	300	
Масса, кг, не более		20
Габаритные размеры (ширина × глубина ×	опция В92	472′445′108
высота), мм, не более	472′445′152	
Время прогрева, мин	30	
Средняя наработка на отказ, лет	10	

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом и на переднюю панель генераторов сигналов SMA100B методом наклейки.

Комплектность средства измерений

Таблица 11 - Комплектность средства измерений

Наименование	Обозначение	Количество
Генератор сигналов	SMA100B	1 шт.
Опции		по отдельному заказу
Комплект ЗИП		1 шт.
Руководство по эксплуатации		1 экз.
Методика поверки	РТ-МП-4669-441-2017	1 экз.

Поверка

осуществляется по документу РТ-МП-4669-441-2017 «ГСИ. Генераторы сигналов SMA100B. Методика поверки», утвержденному ФБУ «Ростест-Москва» 6 сентября 2017 г.

Основные средства поверки:

- стандарт частоты рубидиевый GPS-12RG (регистрационный номер в Федеральном информационном фонде 43830-10);
- ваттметр поглощаемой мощности NRP18S-10 (регистрационный номер в Федеральном информационном фонде 67460-17);
- преобразователь измерительный NRP-Z55 (регистрационный номер в Федеральном информационном фонде 37008-08);
- приемник измерительный FSMR26 с опцией B24 (регистрационный номер в Федеральном информационном фонде 50678-12);
- анализатор фазового шума FSWP26 с опцией B61 (регистрационный номер в Федеральном информационном фонде 63528-16);
- анализатор спектра FSW43 с опциями K7 и B160 (регистрационный номер в Федеральном информационном фонде 53782-13);
- анализатор цепей векторный ZNB20 (регистрационный номер в Федеральном информационном фонде 56388-14).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на переднюю панель генератора сигналов SMA100B в соответствии с рис. 1 или на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к генераторам сигналов SMA100B

Техническая документация фирмы "Rohde & Schwarz GmbH & Co. KG", Германия.

Изготовитель

Фирма «Rohde & Schwarz GmbH & Co. KG», Германия Адрес: Muehldorfstrasse 15, 81671 Munich, Germany

Телефон: +49 89 41 29 0 Факс: +49 89 41 29 12 164

Web-сайт: https://www.rohde-schwarz.com E-mail: customersupport@rohde-schwarz.com

Заявитель

Представительство фирмы «РОДЕ И ШВАРЦ ГМБХ И КО.КГ» (Германия)

ИНН 9909002668

Адрес: 115093 г. Москва, Павловская, д.7, стр.1

Телефон: +7 (495) 981-3560 Факс: +7 (495) 981-3565

Web-сайт: https://www.rohde-schwarz.ru E-mail: sales.russia@rohde-schwarz.com

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон: +7 (495) 544-00-00 Web-сайт: <u>http://www.rostest.ru</u>

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310639 от 16.04.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2017 г.