ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная АСУТП установки водоблока № 2 тит. 176/1 AO «ТАНЕКО»

Назначение средства измерений

Система измерительная АСУТП установки водоблока № 2 тит. 176/1 АО «ТАНЕКО» (далее – ИС) предназначена для измерений параметров технологического процесса (давления, перепада давления, уровня, объемного расхода, массового расхода, температуры, виброскорости, компонентного состава, нижнего концентрационного предела распространения пламени (далее – НКПР), водородного показателя, удельной электрической проводимости), формирования сигналов управления и регулирования.

Описание средства измерений

Принцип действия ИС основан на непрерывном измерении, преобразовании и обработке при помощи комплекса измерительно-вычислительного CENTUM модели VP (регистрационный номер в Федеральном информационном фонде (далее – регистрационный номер) 21532-08) (далее – CENTUM) и комплекса измерительно-вычислительного и управляющего противоаварийной защиты и технологической безопасности ProSafe-RS (регистрационный номер 31026-06) (далее – ProSafe-RS) входных сигналов, поступающих по измерительным каналам (далее – ИК) от первичных и промежуточных измерительных преобразователей (далее – ИП).

ИС осуществляет измерение параметров технологического процесса следующим образом:

- первичные ИП преобразуют текущие значения параметров технологического процесса в аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА;
- аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА от первичных ИП поступают на входы преобразователей измерительных серии Н модели HiC2025 (регистрационный номер 40667-09) (далее HiC2025) и далее на модули ввода аналоговых сигналов AAI143 CENTUM VP (далее AAI143) и SAI143 ProSafe-RS (далее SAI143) (часть сигналов поступает на модули ввода аналоговых сигналов без барьеров искрозащиты);
- сигналы управления и регулирования (аналоговые сигналы силы постоянного тока от 4 до 20 мА) генерируются модулями вывода AAI543 CENTUM VP (далее AAI543) через преобразователи измерительные серии Н модели HiC2031 (регистрационный номер 40667-09) (далее HiC2031).

Цифровые коды, преобразованные посредством модулей ввода аналоговых сигналов в значения физических параметров технологического процесса, отображаются на мнемосхемах мониторов операторских станций управления в виде числовых значений, гистограмм, трендов, текстов, рисунков и цветовой окраски элементов мнемосхем, а также интегрируется в базу данных ИС.

По функциональным признакам ИС делится на две независимые подсистемы: распределенная система управления технологическим процессом и система противоаварийной защиты. ИС включает в себя также резервные ИК.

Состав средств измерений, входящих в состав первичных ИП ИК, указан в таблице 1.

Таблица 1 – Средства измерений, входящие в состав первичных ИП ИК

гаолица г -	 Средства измерении, входящие в состав первичных и 	ПИК
Наименование ИК	Наименование первичного ИП ИК	Регистрационный номер
ИК давления	Преобразователь давления измерительный EJX модели EJX 530 (далее – EJX 530)	28456-09
ИК перепада давления	Преобразователь давления измерительный ЕЈХ модели ЕЈХ 120 (далее – ЕЈХ 120)	28456-09
	Уровнемер микроволновый бесконтактный VEGAPULS 65 (далее – VEGAPULS 65)	27283-12
ИК уровня	Уровнемер контактный микроволновый VEGAFLEX 61 (далее – VEGAFLEX 61)	27284-09
	Уровнемер контактный микроволновый VEGAFLEX 67 (далее – VEGAFLEX 67)	27284-09
	Счетчик-расходомер электромагнитный ADMAG модификации AXF (далее – ADMAG AXF)	17669-09
ИК объемного расхода	Расходомер ультразвуковой OPTISONIC 6300 (далее – OPTISONIC 6300)	48155-11
	Расходомер-счетчик вихревой объемный YEWFLO DY (далее – YEWFLO DY)	17675-09
ИК массового	Счетчик-расходомер массовый кориолисовый ROTAMASS модели RCCS30 (далее – RCCS30)	27054-09
расхода	YEWFLO DY	17675-09
	Термопреобразователь сопротивления платиновый серии TR модели TR62 (далее – TR62)	49519-12
ИК	Преобразователь термоэлектрический TE исполнения TE24 (далее – TE24)	45801-10
температуры	Преобразователь измерительный серии iTEMP TMT модели TMT 182 (далее – TMT 182)	39840-08
	Преобразователь измерительный сигналов от термопар и термометров сопротивления dTRANS T01 тип 707010 (далее – dTRANS T01)	24931-08
ИК виброскорости	Вибропреобразователь серии 64Х модели 640 (далее – Вибропреобразователь 640)	36255-07
ИК компонентного состава	Газоанализатор PrimaX P (далее – PrimaX P)	50721-12
ИК НКПР	Газоанализатор PrimaX IR (далее – PrimaX IR)	50721-12
ИК	1 woodiwingurop i initua it (Aurice 1 iiiitaa itt)	30/21 12
водородного показателя	Анализатор жидкости FLEXA модель FLXA21 (далее – FLXA21)	50876-12
ИК удельной электрической проводимости	FLXA21	50876-12
	I ание — При выхоле из строя первичных ИП лопускается их	г замена на спенства

Примечание – При выходе из строя первичных ИП допускается их замена на средства измерений утвержденного типа с аналогичными или лучшими метрологическими и техническими характеристиками.

ИС выполняет следующие функции:

- автоматизированное измерение, регистрация, обработка, контроль, хранение и индикация параметров технологического процесса;
- предупредительная и аварийная сигнализация при выходе параметров технологического процесса за установленные границы и при обнаружении неисправности в работе оборудования;
- управление технологическим процессом в реальном масштабе времени; противоаварийная защита оборудования установки;
- отображение технологической и системной информации на операторской станции управления;
 - накопление, регистрация и хранение поступающей информации;
 - самодиагностика;
 - автоматическое составление отчетов и рабочих (режимных) листов;
- защита системной информации от несанкционированного доступа программным средствам и изменения установленных параметров.

Программное обеспечение

Программное обеспечение (далее – ПО) ИС обеспечивает реализацию функций ИС.

Защита ПО ИС от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу осуществляется путем идентификации, защиты от несанкционированного доступа.

Идентификационные данные ПО ИС приведены в таблице 2.

Таблица 2 – Идентификационные данные ПО ИС

Идентификационные данные (признаки)	Значение		
идентификационные данные (признаки)	CENTUM	ProSafe-RS	
Идентификационное наименование ПО	CENTUM VP	ProSafe-RS	
Номер версии (идентификационный			
номер) ПО, не ниже	R4.03	R2.03	
Цифровой идентификатор ПО	_	_	

ПО ИС защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров путем введения логина и пароля, ведения доступного только для чтения журнала событий.

Уровень защиты ПО ИС «средний» в соответствии с Р 50.2.077–2014.

Метрологические и технические характеристики

Основные технические характеристики ИС представлены в таблице 3.

Таблица 3 – Основные технические характеристики ИС

Наименование характеристики	Значение
Количество входных ИК, не более	400
Количество выходных ИК, не более	100
Параметры электрического питания:	
- напряжение переменного тока, В	$380^{+15\%}_{-20\%}$; $220^{+10\%}_{-15\%}$
- частота переменного тока, Гц	50±1
Потребляемая мощность, кВ·А, не более	20
Габаритные размеры отдельных шкафов, мм, не более:	
- ширина	1000
- высота	2000

Наименование характеристики	Значение
- глубина	1000
Масса отдельных шкафов, кг, не более	400
Условия эксплуатации:	
а) температура окружающей среды, °С:	
- в месте установки вторичной части ИК	от +15 до +30
- в местах установки первичных ИП ИК	от -40 до +50
б) относительная влажность, %, не более	от 30 до 80,
	без конденсации влаги
в) атмосферное давление, кПа	от 84,0 до 106,7 кПа

Примечание – ИП, эксплуатация которых в указанных диапазонах температуры окружающей среды и относительной влажности не допускается, эксплуатируются при температуре окружающей среды и относительной влажности, указанных в технической документации на данные ИП.

Метрологические характеристики вторичной части ИК ИС приведены в таблице 4.

Таблица 4 – Метрологические характеристики вторичной части ИК ИС

The state of the s						
Тип барьера	Тип модуля ввода/вывода	Пределы допускаемой основной				
искрозащиты	тип модуля ввода/вывода	погрешности, % от диапазона измерений				
HiC2025	AAI143, SAI143	±0,15				
_	AA1143, SA1143	±0,10				
HiC2031	AAI543	±0,32				
_	AA1343	±0,30				

Метрологические характеристики ИК ИС приведены в таблице 5.

Таблица 5 – Метрологические характеристики ИК ИС

	опоринаские узрактар	<u> </u>		огические характеристики и	измеритель	ных компонент	ов ИК	
Meth	Метрологические характеристики ИК			Первичный ИП		Вторичный ИП		
Наимено-вание ИК	Диапазоны измерений	Пределы допускаемой основной погрешности	Тип (выходной сигнал)	Пределы допускаемой основной погрешности	Тип барьера искро- защиты	Типа модуля ввода/вывода	Пределы допускаемой основной погрешности	
1	2	3	4	5	6	7	8	
ИК	от 0 до 200 кПа; от 0 до 1 МПа; от 0 до 1,6 МПа;	g от ±0,20 до ±0,54 %	EJX 530	g от ±0,10 до ±0,46 %	HiC2025	AAI143 или SAI143	g ±0,15 %	
давления	от -100 до 200 кПа ¹⁾ ; от -0,1 до 2 МПа ¹⁾	g от ±0,16 до ±0,52 %	(от 4 до 20 мА)	9 01 =0,10 A0 =0,10 70	-	AAI143 или SAI143	g ±0,1 %	
ИК перепада давления	от 0 до 0,25 кПа; от -1 до 1 кПа ¹⁾	g от ±0,20 до ±0,23 %	ЕЈХ 120 (от 4 до 20 мА)	g от ±0,09 до ±0,135 %	HiC2025	AAI143 или SAI143	g ±0,15 %	
	от 450 до 2550 мм от 0 до 35 м ¹⁾	Δ: ±9,1 мм cм. примечание 3	VEGAPULS 65 (от 4 до 20 мА)	Δ: ±8 мм	ı	AAI143 или SAI143	g ±0,1 %	
	от 800 до 2580 мм	Δ: ±4,42 мм		, , ,	HiC2025	AAI143 или SAI143	g ±0,15 %	
	от 1000 до 6950 мм	Δ: ±10,36 мм	VEGAFLEX 61		HiC2025	AAI143 или SAI143	g ±0,15 %	
ИК уровня ²⁾	от 0,08 до 32 м ¹⁾	CM.	(от 4 до 20 мА)		HiC2025	AAI143 или SAI143	g: ±0,15 %	
	01 0,00 до 32 м	примечание 3			_	AAI143 или SAI143	g ±0,1 %	
	от 250 до 1200 мм	CM.	VEGAFLEX 67	При измерении уровня: - до 20 м ∆: ±3 мм;	HiC2025	AAI143 или SAI143	g ±0,15 %	
	от 0,08 до 32 м ¹⁾	см. примечание 3	VEGAFLEX 67 (от 4 до 20 мА)	- от 20 м d: $\pm 0,015$ %. При измерении уровня раздела фаз Δ : ± 10 мм	_	AAI143 или SAI143	g ±0,1 %	

1	ение таблицы <u>з </u>	3	4	5	6	7	8
	от 0 до 100 м ³ /ч; от 0 до 400 м ³ /ч;	см применацие 4	ADMAG AXF	d: ±0,35 %	_	AAI143 или SAI143	g ±0,1 %
	от 0 до $500 \text{ м}^3/\text{ч}$		(от 4 до 20 мА)	,	HiC2025	AAI143 или SAI143	g ±0,15 %
	от 0 до $800 \text{ m}^3/\text{ч}$; от 0 до $2500 \text{ m}^3/\text{ч}$;	CM.	OPTISONIC 6300	d: - для Ду от 15 до	HiC2025	AAI143 или SAI143	g ±0,15 %
ИК	от 0 до 4000 м ³ /ч; от 0 до 5000 м ³ /ч	примечание 3	(от 4 до 20 мА)	$50 \text{ мм } \pm 3 \text{ %}^{3)};$ - для Ду свыше $50 \text{ мм: } \pm 1 \text{ %}^{3)}$	l	AAI143 или SAI143	g ±0,1 %
ик объемного расхода	от 0 до 12,5 м ³ /ч; от 0 до 160 м ³ /ч	см. примечание 3	YEWFLO DY (от 4 до 20 мА)	В зависимости от Ду d: жидкость: - 25 мм: $\pm 1,0$ % при $20000 \le \text{Re} < 1500\text{D}$ и $\pm 0,75$ % при $1500\text{D} \le \text{Re}$; - от 40 до 100 мм $\pm 1,0$ % при $20000 \le \text{Re} < 1000\text{D}$ и $\pm 0,75$ % при $1000\text{D} \le \text{Re}$; - газ и пар: $\pm 1,0$ % для $V \le 35$ м/с и $\pm 1,5$ % для $35 < V \le 80$ м/с	l	AAI143 или SAI143	g ±0,1 %
ИК массового расхода	от 0 до $0,1$ т/ч $^{1),4)}$	см. примечание 3	RCCS30 (от 4 до 20 мА)	d: - для жидкостей $\pm \frac{Z}{6}$, $1 + \frac{Z}{M} \times 100 \frac{\ddot{o}}{\dot{\varphi}}$, %; - для газов $\pm \frac{Z}{6}$, $5 + \frac{Z}{M} \times 100 \frac{\ddot{o}}{\dot{\varphi}}$, %	HiC2025	AAI143 или SAI143	g ±0,15 %

Продолжение таблицы 5							
1	2	3	4	5	6	7	8
ИК массового расхода	от 0 до 3200 кг/ч	см. примечание 3	YEWFLO DY (от 4 до 20 мА)	В зависимости от Ду d: жидкость: - 25 мм: $\pm 2,0$ % при $20000 \le \text{Re} \le 1500 \text{D}$ и $\pm 1,5$ % при $1500 \text{D} \le \text{Re}$; - от 40 до 100 мм: $\pm 2,0$ % при $20000 \le \text{Re} \le 1000 \text{D}$ и $\pm 1,5$ % при $1000 \text{D} \le \text{Re}$; газ и пар: $\pm 2,0$ % для $V \le 35$ м/с и $\pm 2,5$ % для $35 < V \le 80$ м/с	-	ААІ143 или SAI143	g ±0,1 %
	от -50 до 50 °C от 0 до 100 °C от 0 до 150 °C от 0 до 300 °C	Δ: ±0,39 °C Δ: ±0,48 °C Δ: ±0,6 °C Δ: ±1 °C	TR62 (HCX Pt 100) TMT 182	TR62: Δ: ±(0,15+0,002· t), °C; TMT 182:	HiC2025	AAI143 или SAI143	g ±0,15 %
	200 (00.001)	см. примечание	(от 4 до 20 мА)	Δ: ±0,2 °C или g ±0,08 %	_		g: ±0,1 %
	от -200 до 600 °С ¹⁾	3		(берут большее значение)	HiC2025		g: ±0,15 %
ИК темпера- туры	от -40 до 1200 °C ¹⁾	Δ: ±10,19 °C	TE24 (HCX K)	TE24: Δ: ±2,5 °C (от -40 до 333 °C) Δ: ±0,0075·t, °C (св. 333 до 1200 °C); dTRANS T01:		ААІ143 или	g ±0,15 %
от -40	01 -40 до 1200 °С ∕	Δ: ±10,07 °C	dTRANS T01 (от 4 до 20 мА)	Δ: ±0,5 °C (основная погрешность) и Δ: ±1 °C (погрешность канала компенсации температуры холодного спая)	_	SAI143	g ±0,1 %

1	2	3	4	5	6	7	8
ИК виброско-	от 0 до 12,7 мм/с	см. примечание	Вибропреобра- зователь 640	d: ±10 %	HiC2025	AAI143 или SAI143	g ±0,15 %
рости		3	(от 4 до 20 мА)		_	SA1143	g ±0,1 %
ИК компо- нентного состава	от 0 до 20 млн $^{-1}$ (объемная доля H_2S)	Δ : ±0,56 млн ⁻¹ (в диапазоне от 0 до 3,3 млн ⁻¹); d: ±16,52 % (в диапазоне св. 3,3 до 20 млн ⁻¹)	PrimaX Р (от 4 до 20 мА)	∆: ±0,5 млн ⁻¹ (в диапазоне от 0 до 3,3 млн ⁻¹); д: ±15 % (в диапазоне св. 3,3 до 20 млн ⁻¹)	1	AAI143 или SAI143	g ±0,1 %
ИК НКПР	от 0 до 100 % НКПР	∆: ±5,51 % НКПР (в диапазоне от 0 до 50 % НКПР); d: ±11,01 % (в диапазоне св. 50 до 100 % НКПР)	PrimaX IR (от 4 до 20 мА)	Δ: ±5 % НКПР (в диапазоне от 0 до 50 % НКПР); d: ±10 % (в диапазоне св. 50 до 100 % НКПР)	_	AAI143 или SAI143	g ±0,1 %
ИК водород- ного показателя	от 0 до 14 рН	Δ: ±0,12 pH	FLXA21 (от 4 до 20 мА)	Δ: ±0,1 pH	_	AAI143 или SAI143	g ±0,1 %
ИК удельной электри- ческой проводи- мости	от 0 до 0,01 См/м	g ±2,21 % (в диапазоне от 0 до 0,001 См/м); d: ±2,46 % (в диапазоне от 0,001 до 0,01 См/м)	FLXA21 (от 4 до 20 мА)	g: ±2 % (в диапазоне от 0 до 0,001 См/м); d: ±2 % (в диапазоне от 0,001 до 0,01 См/м)		AAI143 или SAI143	g ±0,1 %
ИК силы тока	от 4 до 20 мА	g ±0,15 % g ±0,10 %	_	_	HiC2025	AAI143 или SAI143	g ±0,15 % g ±0,1 %

1	2	3	4	5	6	7	8
ИК		g ±0,32 %			HiC2031		g ±0,32 %
воспроиз- ведения	от 4 до 20 мА	g ±0,3 %	_	_	_	AAI543	g ±0,3 %
силы тока		3 = 0,0 70					9 = 0,0 70

¹⁾ Указан максимальный диапазон измерений (диапазон измерений может быть настроен на меньший диапазон в соответствии с эксплуатационной документацией на первичный ИП ИК).

Примечания

1 НСХ – номинальная статическая характеристика, ЦАП – цифро-аналоговое преобразование.

2 Приняты следующие обозначения:

 Δ – абсолютная погрешность, в единицах измеряемой величины;

d – относительная погрешность, %;

g- приведенная погрешность, %;

t – измеренная температура, °С;

M – массовый расход, кг/ч;

V – скорость, м/с;

Ду – диаметр условного прохода, мм;

D – внутренний диаметр детектора, мм;

Re – число Рейнольдса.

3 Пределы допускаемой основной погрешности ИК рассчитывают по формулам:

- абсолютная $D_{\mu\nu}$, в единицах измеряемой величины:

$$\label{eq:D_MK} D_{_{\rm MK}} = \pm 1,1 \\ \times \sqrt{D_{_{\rm \Pi\Pi}}{^2} + \mathop{\text{co}}_{\stackrel{\bullet}{\text{co}}}^{} g_{_{\rm B\Pi}}} \\ \times \frac{X_{_{\rm max}} - X_{_{\rm min}}}{100} \mathop{\overset{\circ}{\overset{\circ}{\text{o}}}}^{2}}_{\stackrel{\bullet}{\text{o}}},$$

где D_{m} – пределы допускаемой основной абсолютной погрешности первичного ИП ИК, в единицах измерений измеряемой величины;

 ${\bf g}_{_{\rm B\Pi}}$ — пределы допускаемой основной приведенной погрешности вторичной части ИК, %;

X_{пих} – значение измеряемого параметра, соответствующее максимальному значению диапазона аналогового сигнала, в единицах измерений измеряемой величины;

X_{min} – значение измеряемого параметра, соответствующее минимальному значению границы диапазона аналогового сигнала, в единицах измерений измеряемой величины;

²⁾ Шкала ИК установлена в ИС в процентах (от 0 до 100 %).

³⁾ Без учета погрешности определения параметров трубопровода.

⁴⁾ Шкала ИК установлена в ИС в единицах измерения объемного расхода.

- относительная _{dик}, %:

$$d_{\text{MK}} = \pm 1.1 \times \sqrt{d_{\text{HII}}^2 + \mathop{\text{cg}}_{\text{GBII}}} \times \frac{X_{\text{max}} - X_{\text{min}}}{X_{\text{MAM}}} \frac{\ddot{o}^2}{\ddot{o}},$$

где d_{пп} – пределы допускаемой основной относительной погрешности первичного ИП ИК, %;

Х – измеренное значение, в единицах измерений измеряемой величины.

- приведенная _{дик} , %:

$$g_{\text{MK}} = \pm 1.1 \times \sqrt{g_{\text{\Pi\Pi}}^2 + g_{\text{B\Pi}}^2},$$

где 9пп – пределы допускаемой основной приведенной погрешности первичного ИП ИК, %.

- 4 Для расчета погрешности ИК в условиях эксплуатации:
- приводят форму представления основных и дополнительных погрешностей измерительных компонентов ИК к единому виду (приведенная, относительная, абсолютная):
- для каждого измерительного компонента ИК рассчитывают пределы допускаемых значений погрешности в условиях эксплуатации путем учета основной и дополнительных погрешностей от влияющих факторов.

Пределы допускаемых значений погрешности измерительного компонента ИК в условиях эксплуатации рассчитывают по формуле

$$\mathsf{D}_{\text{CM}} = \pm \sqrt{\mathsf{D}_{0}^{2} + \mathop{\mathsf{a}}_{i=0}^{n} \; \mathsf{D}_{i}^{2}} \; \; ,$$

где D_0 – пределы допускаемой основной погрешности измерительного компонента;

 D_{i} — погрешности измерительного компонента от i-го влияющего фактора в условиях эксплуатации при общем числе n учитываемых влияющих факторов.

Для каждого ИК рассчитывают границы, в которых с вероятностью равной 0,95 должна находиться его погрешность в условиях эксплуатации, по формуле

$$\mathsf{D}_{\mathsf{MK}} = \pm 1,1 \times \sqrt{\mathop{\mathbf{a}}\limits_{\mathsf{j}=0}^{k} \left(\mathsf{D}_{\mathsf{CU}\mathsf{j}}\right)^{2}} \;,$$

 $ho_{
m CHj}$ — пределы допускаемых значений погрешности $ho_{
m CH}$ *j*-го измерительного компонента ИК в условиях эксплуатации.

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Комплектность ИС представлена в таблице 6.

Таблица 6 – Комплектность ИС

Наименование	Обозначение	Количество
Система измерительная АСУТП установки		
водоблока № 2 тит. 176/1 AO «ТАНЕКО»,	_	1 шт.
заводской № 176/1		
Система измерительная АСУТП установки		
водоблока № 2 тит. 176/1 AO «ТАНЕКО».	_	1 экз.
Руководство по эксплуатации		
Система измерительная АСУТП установки		
водоблока № 2 тит. 176/1 AO «ТАНЕКО».	_	1 экз.
Паспорт		
Государственная система обеспечения единства		
измерений. Система измерительная АСУТП	МП 2808/1-311229-2017	1 экз.
установки водоблока № 2 тит. 176/1	WIII 2006/1-311229-2017	1 3K3.
AO «ТАНЕКО». Методика поверки		

Поверка

осуществляется по документу МП 2808/1-311229-2017 «Государственная система обеспечения единства измерений. Система измерительная АСУТП установки водоблока № 2 тит. 176/1 АО «ТАНЕКО». Методика поверки», утвержденному ООО Центр Метрологии «СТП» 28 августа 2017 г.

Основные средства поверки:

- средства измерений в соответствии с нормативными документами на поверку средств измерений, входящих в состав ИС;
- калибратор многофункциональный MC5-R-IS (регистрационный номер 22237-08), диапазон воспроизведения силы постоянного тока от 0 до 25 мА; пределы допускаемой основной погрешности воспроизведения $\pm (0.02 \%$ показания + 1 мкА); диапазон измерений силы постоянного тока ± 100 мА; пределы допускаемой основной погрешности измерений $\pm (0.02 \%$ показания + 1.5 мкА).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик ИС с требуемой точностью.

Знак поверки наносится на свидетельство о поверке ИС.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе измерительной АСУТП установки водоблока № 2 тит. 176/1 AO «ТАНЕКО»

ГОСТ Р 8.596–2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «ТАНЕКО» (АО «ТАНЕКО»)

ИНН 1651044095

Адрес: 423570, Российская Федерация, Республика Татарстан, г. Нижнекамск, Промзона

Телефон: (8555) 49-02-02, факс: (8555) 49-02-00

Web-сайт: http://taneco.ru E-mail: referent@taneco.ru

Испытательный центр

Общество с ограниченной ответственностью Центр Метрологии «СТП»

Адрес: 420107, Российская Федерация, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, корп. 5, офис 7

Телефон: (843) 214-20-98, факс: (843) 227-40-10

Web-сайт: http://www.ooostp.ru

E-mail: office@ooostp.ru

Аттестат аккредитации ООО Центр Метрологии «СТП» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311229 от 30.07.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___» _____ 2017 г.