ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «БИАКСПЛЕН» Новокуйбышевский филиал 2-я очередь

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «БИАКСПЛЕН» Новокуйбышевский филиал 2-я очередь (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее - ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее - ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-3.

2-й уровень - измерительно-вычислительный комплекс электроустановки (ИВКЭ) , включающий в себя устройство сбора и передачи данных ЭКОМ-3000 (далее - УСПД), каналообразующую аппаратуру, устройство синхронизации времени (далее - УСВ), входящее в состав УСПД.

3-й уровень - информационно-вычислительный комплекс (ИВК) ООО «БИАКСПЛЕН» Новокуйбышевский филиал, включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), программное обеспечение (далее - ПО) ПК «Энергосфера», АРМ энергосбытовой организации - субъекта оптового рынка, подключенный к базе данных ИВК ООО «БИАКСПЛЕН» Новокуйбышевский филиал при помощи удаленного доступа по сети Internet.

Измерительные каналы (далее - ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на

верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем - третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. АРМ энергосбытовой организации - субъекта оптового рынка, подключенный к базе данных ООО «БИАКСПЛЕН» Новокуйбышевский филиал при помощи удаленного доступа но сети Internet в автоматическом режиме, с использованием ЭЦП, раз в сутки формирует и отправляет по выделенному каналу связи по протоколу TCP/IP отчеты в формате XML в АО «АТС», филиал АО «СО ЕЭС» Самарское РДУ и всем заинтересованным субъектам.

Сервер БД и УСПД АИИС КУЭ входят в состав АИИС КУЭ ООО «БИАКСПЛЕН НК», (рег. № 60639-15).

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровни ИИК, ИВКЭ и ИВК. АИИС КУЭ оснащена УСВ, принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов УСВ не более ±1 с. Коррекция часов УСПД проводится при расхождении часов УСПД и времени УСВ более чем на ±1 с. УСПД обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится при расхождении часов сервера БД и времени УСПД более чем на ±1 с. Коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ±2 с. Погрешность часов компонентов АИИС КУЭ не превышает ±5 секунд в сутки.

Журналы событий счетчика электроэнергии отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств.

Журналы событий сервера БД и УСПД отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версиии 1.1.1.1, в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 - Метрологические значимые модули ПО

Идентификационные признаки	Значение
Идентификационное наименование ПО	ПК «Энергосфера»
	Библиотека pso_metr.dll
Номер версии (идентификационный номер) ПО	1.1.1.1
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B
Алгоритм вычисления цифрового идентификатора ПО	MD5

ПО ПК «Энергосфера» не влияет на метролгические характеристики ИК АИИС КУЭ приведенные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

Номер ИК	Наименование объекта	Измерительные компоненты					Метрологические характеристики ИК	
		TT	ТН	Счётчик	УСПД	Вид электро- энергии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	ГПП 110/6 кВ «Бризол», ЗРУ-6	ТЛМ-10 Кл. т. 0,5 1000/5	НТМИ-6-66 Кл. т. 0,5	CЭT-4TM.03M	ЭКОМ- 3000	активная	±1,1	±3,0
	кВ, 2 СШ 6 кВ, Яч. 18		6000/100	Кл. т. 0,2S/0,5		реактивная	±2,7	±4,8
2	ГПП 110/6 кВ «Бризол», ЗРУ-6	ТЛМ-10 Кл. т. 0,5 1000/5	НТМИ-6-66 Кл. т. 0,5 6000/100	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	ЭКОМ- 3000	активная	±1,1	±3,0
	кВ, 2 СШ 6 кВ, Яч. 16					реактивная	±2,7	±4,8
3	ГПП 110/6 кВ «Бризол», ЗРУ-6	ТЛК-СТ-10 Кл. т. 0,5 1000/5	3PV-6 1JR-C1-10 H1MI-6-66 CPT-4TM 03M	СЭТ-4ТМ.03М	ЭКОМ- 3000	активная	±1,1	±3,0
	кВ, 1 СШ 6 кВ, Яч. 13		6000/100	Кл. т. 0,2S/0,5		реактивная	±2,7	±4,8
4	ГПП 110/6 кВ «Бризол», ЗРУ-6 кВ, 1 СШ 6 кВ, Яч. 9	НТМИ-6-66 Кл. т. 0,5 6000/100	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	ЭКОМ- 3000	активная	±1,1	±3,0	
					реактивная	±2,7	±4,8	

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos j=0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 4 от 0 до плюс 40 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 - Основные технические характеристики ИК

Таолица 3 - Основные технические характеристики ИК	1
Наименование характеристики	Значение
Количество измерительных каналов	4
Нормальные условия:	
параметры сети:	
- напряжение, $\%$ от $U_{\text{ном}}$	от 98 до 102
- ток, % от I _{ном}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, $\%$ от $U_{\text{ном}}$	от 90 до 110
- ток, % от I _{ном}	от 5 до 120
- коэффициент мощности	от 0,5 $_{\text{инд}}$. до 0,8 $_{\text{емк}}$.
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °С:	от -40 до +65
- температура окружающей среды в месте расположения	
сервера, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчика СЭТ-4ТМ.03М	165000
- среднее время восстановления работоспособности, ч	2
УСПД:	
- среднее время наработки на отказ не менее, ч	
для УСПД ЭКОМ-3000	100000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1

Окончание таблицы 3

Наименование характеристики	Значение
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	114
- при отключении питания, лет, не менее	40
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление за	
месяц по каждому каналу, суток, не менее	45
- сохранение информации при отключении питания, лет,	
не менее	10
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «БИАКСПЛЕН» Новокуйбышевский филиал типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег №	Количество, шт.	
Трансформатор тока	ТЛМ-10	2473-69	6	
Трансформатор тока	ТЛК-СТ-10	58720-14	2	
Трансформатор напряжения	НТМИ-6-66	2611-70	2	
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	36697-12	4	
Устройство сбора и передачи данных	ЭКОМ-3000	17049-14	1	
Программное обеспечение	ПК «Энергосфера»	-	1	
Методика поверки	МП 206.1-300-2017	-	1	
Паспорт-Формуляр	РЭСС.411711.АИИС.448 ПФ	-	1	

Поверка

осуществляется по документу МП 206.1-300-2017 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «БИАКСПЛЕН» Новокуйбышевский филиал 2-я очередь. Измерительные каналы. Методика поверки», утвержденному Φ ГУП «ВНИИМС» 15 сентября 2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- УСПД ЭКОМ-3000 по документу ПБКМ.421459.007 МП «Устройства сбора и передачи данных «ЭКОМ-3000». Методика поверки», согласованному с ФГУП «ВНИИМС» 20 апреля 2014 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04:
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%;

- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «БИАКСПЛЕН» Новокуйбышевский филиал 2-ая очередь, аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № RA.RU.311787 от $02.08.2016 \, \Gamma$.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «БИАКСПЛЕН» Новокуйбышевский филиал 2-ая очередь

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «РЭС Групп» (АО «РЭС Групп»)

ИНН 3328489050

Адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д.23, оф.9

Телефон: (4922) 44-87-06 Факс: (4922) 33-44-86 E-mail: info@rek-21.ru

Web-сайт: http://www.orem.su

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: (495) 437-55-77 Факс: (495) 437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2017 г.