ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции Восточно-Сибирской ЖД филиала ОАО «РЖД» в границах Республики Бурятия

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции Восточно-Сибирской ЖД филиала ОАО «РЖД» в границах Республики Бурятия (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

Первый уровень - включает в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН), счетчики активной и реактивной электроэнергии (счетчики), вторичные измерительные цепи и технические средства приемапередачи данных;

Второй уровень - измерительно-вычислительный комплекс регионального Центра энергоучета, реализован на базе устройства сбора и передачи данных (УСПД), выполняющего функции сбора, хранения результатов измерений и передачи их на уровень ИВК.

Третий уровень - измерительно-вычислительный комплекс Центра сбора данных АИИС КУЭ (ИВК), реализованный на базе серверного оборудования (серверов сбора данных - основного и резервного, сервера управления), ПО «Энергия Альфа 2», включающий в себя каналы сбора данных с уровня регионального Центра энергоучета, каналы передачи данных субъектам оптового рынка электроэнергии и мощности (ОРЭМ).

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД регионального Центра энергоучета, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее по основному каналу связи, организованному на базе волоконно-оптической линии связи, данные передаются в ЦСОД ОАО «РЖД», где происходит оформление отчетных документов.

Дальнейшая передача информации от ЦСОД ОАО "РЖД" третьим лицам осуществляется по каналу связи сети Internet в формате XML-макетов в соответствии с регламентами ОРЭМ.

ЦСОД ОАО "РЖД" также обеспечивает прием измерительной информации от АИИС КУЭ утвержденного типа третьих лиц, получаемой в формате XML-макетов в соответствии с регламентами ОРЭМ в автоматизированном режиме посредством электронной почты сети Internet.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), которая охватывает все уровни системы. СОЕВ выполняет законченную функцию измерений времени, имеет нормированные метрологические характеристики и обеспечивает автоматическую синхронизацию времени. Для обеспечения единства измерений используется единое календарное время. СОЕВ создана на основе приемников сигналов точного времени от спутниковой глобальной системы позиционирования (GPS) УССВ-35HVS (УССВ). В состав СОЕВ входят часы УСПД, счетчиков, ЦСОД ОАО «РЖД».

ЦСОД ОАО «РЖД» оснащен приемником сигналов точного времени УССВ-35HVS. Сравнение показаний часов ЦСОД ОАО «РЖД» и УССВ происходит при каждом сеансе связи ЦСОД - УССВ. Синхронизация осуществляется при расхождении показаний на величину более чем ± 1 с.

Сравнение показаний часов УСПД и ЦСОД ОАО «РЖД» происходит при каждом сеансе связи УСПД - ЦСОД. Синхронизация осуществляется при расхождении показаний на величину более чем ± 1 с.

Сравнение показаний часов счетчиков и УСПД происходит при каждом сеансе связи счетчик - УСПД. Синхронизация осуществляется при расхождении показаний на величину более чем ± 1 с.

Погрешность системного времени не превышает ±5 с.

Журналы событий счетчика электроэнергии, УСПД и сервера отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО «Энергия Альфа 2».

ПО «Энергия Альфа 2» используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку с помощью принтера и передачу в форматах, предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные ПО «Энергия Альфа 2», установленного в ИВК, указаны в таблице 1.

Таблица 1 - Идентификационные данные ПО «Энергия Альфа 2»

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Энергия Альфа 2
Номер версии (идентификационный номер) ПО	не ниже 2.0.3.ХХ
Цифровой идентификатор ПО (MD 5, enalpha.exe)	17e63d59939159ef304b8ff63121df60

Уровень защиты ПО «Энергия Альфа 2» от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

приведены в таблицах 2 - 5.

Таблица 2 - Состав ИК АИИС КУЭ

Mo	Havyvanavyva	Состав ИК АИИС КУЭ						
№ Наименование ИК присоединения		Трансформатор Трансформатор тока напряжения		Счетчик	УСПД			
	ТП Кичера							
1	Вв 220 кВ 1Т	ТФ3М-220 УХЛ1 кл.т 0,5 Ктт = 500/5 Зав. № 11397 Регистрационный номер в Федеральном информационном фонде (рег. №) 3694-73	НАМИ-220 УХЛ1 кл.т 0,2 Ктн = 220000/√3/100/√3 Зав. № 1106, 1135, 1130 рег. № 20344-05	A2R-4-AL-C29-T+ кл.т 0,5S/1,0 Зав. № 01103657 рег. № 14555-02	RTU-327 3aв. № 001523 per. № 41907-09			

Таблица 3 - Метрологические характеристики ИК (активная энергия)

таолица 5 - метрологические характеристики ит (активная энергия)									
Номер ИК	Диапазон значений силы тока	Границы интервала основной относительной погрешности ИК $(\pm \delta)$, %			Границы интервала относительной погрешности ИК в рабочих условиях эксплуатации $(\pm \delta)$, %				
		cos φ	cos φ	cos φ	cos φ	cos φ	$\cos \varphi =$	cos φ =	cos φ =
		= 1,0	= 0.87	= 0.8	= 0,5	= 1,0	0,87	0,8	0,5
1	$0.01(0.02) I_{H_1} \le I_1 < 0.05 I_{H_1}$	-	ı	-	ı	-	-	-	-
(TT 0,5; TH 0,2;	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	1,8	2,5	2,9	5,4	2,2	2,8	3,2	5,6
Сч 0,5S)	$0,2I_{H_1} \le I_1 < I_{H_1}$	1,1	1,4	1,5	2,8	1,7	1,9	2,1	3,2
C-1 0,33)	$I_{H_1} \leq I_1 \leq 1,2I_{H_1}$	0,9	1,0	1,2	2,0	1,5	1,7	1,8	2,5

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

тиолица т тистрологи теские характеристики тис (реактивная эпертия)						
				Границы	интервала	
		Границы	интервала	относительной		
		основной относительной погрешности ИК $(\pm \delta)$, %		погрешности ИК в		
Номер	Диапазон значений силы			$IK (\pm \delta)$, % рабочих условиях		
ИК	тока			эксплуатации ($\pm \delta$), %		
		200 0 - 0 9	$\cos \varphi = 0.5$	202 0 - 0 9	$\cos \varphi = 0.5$	
		$\cos \varphi = 0.8$ $(\sin \varphi = 0.6)$	$(\sin \varphi =$	$\cos \varphi = 0.8$ $(\sin \varphi = 0.6)$	$(\sin \varphi =$	
		$(\sin \phi - 0.0)$	0,87)	$(SIII \psi - 0.0)$	0,87)	
1	$0.01(0.02) I_{H_1} \le I_1 < 0.05 I_{H_1}$	-	1	1	-	
(TT 0,5;	$0.05 \mathrm{Ih}_1 \le \mathrm{I}_1 < 0.2 \mathrm{Ih}_1$	4,6	2,8	5,1	3,4	
TH 0,2;	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	2,5	1,7	2,9	2,2	
Сч 1,0)	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	1,9	1,4	2,3	2,0	

Примечания

- 1 Погрешность в рабочих условиях указана при температуре окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 5 до плюс 35°C;
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;

3 Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с такими же метрологическими характеристиками. Допускается замена УСПД на однотипные утвержденного типа. Замена оформляется актом в установленном собственником порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Значение
2
от 99 до 101
от 100 до 120
0,87
от +21 до +25
от +18 до +22
от 90 до 110
от 5 до 120
от $0.5_{\rm \ инд}$ до $0.8_{\rm \ emk}$
· · · · · · · · · · · · · · · · · · ·
от -60 до +40
от -40 до +55
от +1 до +50
0,5
35000
3
100000
70000
45
.5
45
15
3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера, УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика электрической энергии;
 - УСПД;

Возможность коррекции времени в:

- счетчиках электрической энергии (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ. Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 - Комплектность средства измерений

Наименование	Обозначение	Количество
Трансформаторы тока	ТФ3М-220 УХЛ1	1 шт.
Трансформаторы напряжения	НАМИ-220 УХЛ1	3 шт.
Счетчики электрической энергии	A2R-4-AL-C29-T+	1
трехфазные многофункциональные	A2R-4-AL-C29-1+	1 шт.
Устройство сбора и передачи данных	RTU-327	1 шт.
Методика поверки	МП 206.1-322-2017	1 экз.
Паспорт-формуляр	82462078.411711.001.060.ПС-ФО	1 экз.

Поверка

осуществляется по документу МП 206.1-322-2017 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции Восточно-Сибирской ЖД филиала ОАО «РЖД» в границах Республики Бурятия. Методика поверки», утвержденному ФГУП «ВНИИМС» 14.11.2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 ГСИ. Трансформаторы тока. Методика поверки;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 ГСИ. Трансформаторы напряжения. Методика поверки и/или МИ 2925-2005 ГСИ. Измерительные трансформаторы напряжения 35...330/√3 кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя;
- по МИ 3195-2009 ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей;
- по МИ 3196-2009. ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей;
- счетчиков АЛЬФА по методике поверки «Многофункциональные счетчики электрической энергии типа АЛЬФА. Методика поверки», согласованной ФГУП «ВНИИМ им. Д. И, Менделеева», с помощью установок МК 6800, МК 6801 или аналогичного оборудования с классом точности не хуже 0,05;
- для УСПД RTU-327 по документу «Устройства сбора и передачи данных RTU-327. Методика поверки ДЯИМ.466215.007МП.», утвержденному ФГУП «ВНИИМС» в 2009 г.;
 - радиочасы МИР РЧ-01, рег. № 27008-04;
 - термогигрометр CENTER (мод.314), рег. № 22129-09.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции Восточно-Сибирской ЖД филиала ОАО «РЖД» в границах Республика Бурятия», аттестованном ФГУП «ВНИИМС», аттестат аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции Восточно-Сибирской ЖД филиала ОАО «РЖД» в границах Республика Бурятия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

Изготовитель

Открытое акционерное общество «Российские железные дороги» (ОАО «РЖД»)

ИНН 7708503727

Адрес: 107174, г. Москва, Новая Басманная ул., д.2 Телефон: +7 (499) 262-60-55; Факс: +7 (499) 262-60-55

Web-сайт: www.rzd.ru; E-mail: info@rzd.ru

Заявитель

Акционерное общество «Научно-исследовательский и проектно-конструкторский институт информатизации, автоматизации и связи на железнодорожном транспорте» (АО «НИИАС»)

ИНН 7709752846

Адрес: 109029, г. Москва, ул. Нижегородская, д. 27, стр.1

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

Адрес: 119631, г. Москва, ул. Озерная, д.46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 Web-сайт: <u>www.vniims.ru</u> E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2017 г.