ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы фиксации нарушений ПДД «Призма-StoS»

Назначение средства измерений

Комплексы фиксации нарушений ПДД «Призма-StoS» (далее комплексы) предназначены для измерений скорости движения транспортных средств (далее по тексту ТС) в зоне контроля и на протяженном участке дороги в автоматическом режиме, а также для измерений текущего времени (интервалов времени), синхронизированного с национальной шкалой времени Российской Федерации UTC(SU), измерений текущих навигационных параметров и определения на их основе координат комплексов.

Описание средства измерений

Комплексы конструктивно состоят из: управляющего контроллера, видеодатчика, ИК-прожектора.

Управляющий контроллер является основным элементом комплексов и предназначен для обработки и обмена информацией и содержит в себе вычислительный блок, блок питания, преобразователь напряжения, коммутатор связи, блок навигации и определения времени, датчик вскрытия, розетку электропитания, средства терморегуляции, автоматы подключения электропитания, GPS/GSM/WiFi/LTE-антенны. Корпус управляющего контроллера выполнен в виде антивандального, влагозащищенного металлического шкафа.

Блок навигации и определения времени осуществляет прием данных о точном времени и координатах и позволяет в автоматическом режиме синхронизировать внутреннюю шкалу времени комплекса со шкалой UTC (SU).

Видеодатчик состоит из IP-видеокамеры CR или CP, ИК-подсветки, влагозащищенного кожуха и предназначен для осуществления непрерывной фотосъемки дороги, и распознавания государственных регистрационных знаков (ГРЗ) TC.

Принцип действия комплексов основан на измерении скорости движения ТС, косвенным методом путем измерений расстояния, пройденного ТС в зоне контроля за фиксированный интервал времени, либо путем измерений интервала времени, за который ТС проходит известное расстояние. Таким образом, скорость может измеряться как в одной зоне контроля, так и между двумя зонами контроля.

Способы установки комплексов указаны в Руководстве по эксплуатации.

Внешний вид составных частей комплексов с указанием мест пломбирования и нанесения знака утверждения типа приведен на рисунках 1, 2.

Управляющий контроллер

ИК-прожектор Видеодатчик

Рисунок 1 - Внешний вид составных частей комплексов

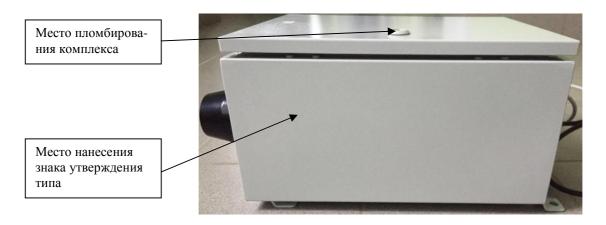


Рисунок 2 - Место пломбирования от несанкционированного доступа и место нанесения знака утверждения типа

Программное обеспечение

Метрологически значимая часть программного обеспечения (ПО) обеспечивает определение координат комплекса и текущего времени, расчета интервалов времени.

- В функции, выполняемые встроенным в комплексы ПО входит:
- а) предварительная настройка видеодатчиков перед работой;
- б) извлечение посылок точного времени из радиочастотного сигнала системы Γ ЛОНАСС/GPS (с использованием поверенных приемников Γ ЛОНАСС/GPS) и обеспечение точности поддержания хода времени энергонезависимых часов вычислительной подсистемы ± 1 с/сутки при отсутствии сигналов от опорного источника;
 - в) правильное (достоверное) распознавание ГРЗ ТС;
 - г) первичная обработка полученного фото- и видеоматериала
- -характеристики изображений ГРЗ размещаются в кадре целиком. Изображения символов визуально различимы, четкие, не размытые.

Идентификационные данные метрологически значимой части ПО комплексов приведены в таблице 1.

Таблица 1- Идентификационные данные метрологически значимой части ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	ПРИЗМА-StoS	
Номер версии (идентификационный номер) ПО	не ниже 1.0	
Цифровой идентификатор ПО (контрольная сумма исполняе-	-	
мого кода)		
Алгоритм вычисления идентификатора ПО	-	

Защита ПО от изменения её метрологически значимой части реализована путем установки парольной защиты.

Уровень защиты ПО комплекса и сохраняемых данных от преднамеренных и непреднамеренных изменений соответствует уровню «высокий» по Р 50.2.077-2014.

Метрологические и технические характеристикиМетрологические и технические характеристики комплексов приведены соответственно в таблице 2 и таблице 3.

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение характеристи-	
	ки	
Диапазон измерений скорости движения ТС, км/ч		
- при измерении скорости по видеокадрам	от 10 до 310	
- при измерении скорости на контролируемом участке дороги	от 10 до 310	
Пределы допускаемой погрешности измерений скорости ТС:		
- при измерении скорости ТС по видеокадрам		
- в диапазоне от 10 до 100 км/ч включ., км/ч	±1	
- в диапазоне св. 100 до 310 км/ч, % от измеряемой величины	±1	
- при измерении скорости на контролируемом участке дороги		
- в диапазоне от 10 до 100 км/ч включ., км/ч	±1	
- в диапазоне св. 100 до 310 км/ч, % от измеряемой величины	±1	
Минимальное расстояние при измерении скорости движения ТС		
на участке между двумя комплексами, м	300	
Диапазон измерений интервалов времени	от 5 с до 24 ч	
Пределы допускаемой абсолютной погрешности синхронизации		
времени относительно шкалы UTC (SU), мс	±10	
Пределы допускаемой абсолютной погрешности формирования		
интервалов между кадрами при измерении скорости безрадарным		
методом (по видеокадрам), мкс	±10	
Границы допускаемой абсолютной инструментальной погрешности		
(при доверительной вероятности 0,95) определения координат в		
плане, м	±5	

Таблица 3 - Основные технические характеристики

Наименование характеристики	Значение характеристики	
Время установления рабочего режима, мин, не более:		
в летнее время	5	
в зимнее время	40	
Условия эксплуатации:		
- температура окружающей среды, °С	от -40 до +50	
- относительная влажность при температуре 25 °C, %, не более	98	
- атмосферное давление, кПа	от 60 до 106,7	
Степень защиты по ГОСТ 14254-96	IP66	
Напряжение питания от сети переменного тока частотой		
(50±1) Γι, B	от 187 до 268	
Потребляемая мощность комплекса, В А, не более	20	
Габаритные размеры составных частей комплексов (длина×		
ширина×высота), мм, не более:		
- управляющий контроллер	400×300×210	
- видеодатчик	404×175×164	
- ИК-прожектор	100×110×80	
Масса составных частей комплексов, кг, не более		
- управляющий контроллер	20	
- видеодатчик	5	
- ИК-прожектор	0,6	

Знак утверждения типа

наносится на титульный лист формуляра и руководства по эксплуатации методом компьютерной графики и на корпус управляющего контролера комплекса с помощью этикетки, выполненной типографским способом.

Комплектность средства измерений

Комплект поставки комплексов приведен в таблице 4.

Таблица 4 - Комплект поставки комплексов

Наименование	Кол-во	Примечание
Комплексы фиксации нарушений ПДД «Призма-StoS»		
в составе:		
- управляющий контроллер	1	
- видеодатчик	1-4*	по заказу
- ИК-прожектор	1-4*	по заказу
Комплексы фиксации нарушений ПДД «Призма-StoS»	1	
Руководство по эксплуатации 001.20.77.03 РЭ		
Комплексы фиксации нарушений ПДД «Призма-StoS»	1	
Паспорт 001.20.77.03 ПС		
*- количество составных частей комплекса определяется заказом и отражается в Паспорте		

Поверка

осуществляется по документу $001.20.77.03~\text{М}\Pi$ «Комплексы фиксации нарушений ПДД «Призма-StoS». Методика поверки», утвержденному ФГУП «ВНИИФТРИ» 23 октября 2017~г.

Основные средства поверки:

- аппаратура навигационно-временная потребителей глобальных навигационных спутниковых систем ГЛОНАСС/GPS/GALLILEO/SBAS NV08C-CSM-DR (рег. № 52614-13);
 - источники первичные точного времени УКУС-ПИ 02ДМ (рег. № 60738-15);
 - частотомер электронно-счетный Ч3-63/1 (рег. № 9084-90);
 - осциллограф цифровой АКИП-4115/1A (рег. № 51561-12);
 - лазерный дальномер LEICA DISTO D510 (рег. № 41142-09)\$
- рабочий эталон единиц координат местоположения 1 разряда по ГОСТ Р 8.750-2011, область пространства до 8000000 м от поверхности геоида, скорость в диапазоне от 0 до 12000 м/с, беззапросная дальность в диапазоне от 0 до 90000000 м, скорость изменения беззапросной дальности в диапазоне от 0 до 11000 м/с.

Допускается применение других средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится в свидетельство о поверке в виде оттиска поверительного клейма или наклейки.

Сведения о методиках (методах) измерений

приведены в эксплуатационной документации.

Нормативные и технические документы, устанавливающие требования к комплексам фиксации нарушений ПДД «Призма-StoS»

ГОСТ 8.129-2013 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерения времени и частоты.

ГОСТ Р 57144-2016 «Специальные технические средства, работающие в автоматическом режиме и имеющие функции фото- и киносъемки, видеозаписи, для обеспечения контроля за дорожным движением. Общие технические требования».

«Комплексы фиксации нарушений ПДД «Призма-StoS». Технические условия 001.20.77.03 TV.

Изготовитель

Общество с ограниченной ответственностью «Призма» (ООО «Призма»)

ИНН 9715297941

Адрес производства: 111033, г. Москва, Золоторожский Вал. д.32 стр.11 оф.108

Юридический адрес: 121059 г. Москва, Бережковская набережная, д.16, корп.2, офис 508

Тел/факс: +7(495) 134-22-21 E-mail: <u>mail@npoprizma.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Φ ГУП «ВНИИ Φ ТРИ»)

Юридический адрес: 141570, Московская область, Солнечногорский р-н, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11

Почтовый адрес: 141570, Московская область, Солнечногорский р-н, п/о Менделеево

Тел./факс (495) 526-63-00 E-mail: office@vniiftri.ru

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2017 г.