ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ Выходной

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ Выходной (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

Измерительные каналы (далее по тексту - ИК) АИИС КУЭ включают в себя следующие уровни:

Первый уровень - включает в себя измерительные трансформаторы тока (далее по тексту - TT), измерительные трансформаторы напряжения (далее по тексту - TH), счетчики активной и реактивной электроэнергии (далее по тексту - Счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

Второй уровень - информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД), систему обеспечения единого времени (СОЕВ), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, коммутационное оборудование;

Третий уровень - информационно-вычислительный комплекс (ИВК). Этот уровень обеспечивает выполнение следующих функций:

- синхронизацию шкалы времени ИВК;
- сбор информации (результаты измерений, журнал событий);
- обработку данных и их архивирование;
- хранение информации в базе данных сервера Центра сбора и обработки данных (далее по тексту ЦСОД) ПАО «ФСК ЕЭС» не менее 3,5 лет;
- доступ к информации и ее передачу в организации-участники оптового рынка электроэнергии и мощности (ОРЭМ).

ИВК включает в себя: сервер коммуникационный, сервер архивов и сервер баз данных; устройство синхронизации системного времени; автоматизированные рабочие места (APM) на базе персонального компьютера (далее по тексту - ПК); каналообразующую аппаратуру; средства связи и передачи данных.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по измерительным линиям связи поступают на входы счетчика электроэнергии, где производится измерение мгновенных и средних значений активной и реактивной мощности. На основании средних значений мощности измеряются приращения электроэнергии за интервал времени 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где производится сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

УСПД автоматически проводит сбор результатов измерений и состояния средств измерений со счетчиков электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

ИВК АИИС КУЭ ЕНЭС осуществляет опрос уровня ИВКЭ последовательноциклическим способом. Данные по наземным сетям связи операторов (на основе собственных и арендованных цифровых каналов связи) поступают на соответствующие узлы передачи данных операторов, размещенных на ММТС-9, г. Москва. Далее данные по каналу единой цифровой сети связи энергетики (далее - ЕЦССЭ) поступают на серверы ЦСОД Исполнительного аппарата ПАО «ФСК ЕЭС» (далее ЦСОД ИА ПАО «ФСК ЕЭС») для последующей обработки, хранения и передачи смежным субъектам ОРЭМ, филиалу АО «СО ЕЭС» и в программноаппаратный комплекс (ПАК) АО «АТС». Связь организована по дуплексным каналам, данные от ЦСОД ИА ПАО «ФСК ЕЭС» к уровню ИВКЭ поступают в обратном порядке.

Ежедневно оператор ИВК АИИС КУЭ ЕНЭС формирует файл отчета с результатами измерений, в формате XML, и передает его в ПАК АО «ATC» и в АО «CO EЭС».

Полученные данные и результаты измерений могут использоваться для оперативного управления энергопотреблением на ПС 330 кВ Выходной ПАО «ФСК ЕЭС».

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации шкалы времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ). Устройство синхронизации системного времени обеспечивает автоматическую синхронизацию часов сервера, при превышении порога ±1 с происходит коррекция часов сервера. Синхронизация часов УСПД выполняется автоматически с помощью приемника точного времени, принимающего сигналы точного времени от навигационной спутниковой системы GPS, коррекция проводится при расхождении часов УСПД и приемника точного времени на значение, превышающее ±1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ±2 с.

При выходе из строя УССВ, встроенного в УСПД, время часов УСПД корректируется от сервера ИВК автоматически в случае расхождения времени часов УСПД и ИВК на величину более ± 1 с.

Программное обеспечение

В АИИС КУЭ используется специализированное программное обеспечение Автоматизированная информационно-измерительная система коммерческого учета электроэнергии ЕНЭС (Метроскоп) (далее по тексту - СПО АИИС КУЭ ЕНЭС (Метроскоп)). СПО АИИС КУЭ ЕНЭС (Метроскоп) используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку с помощью принтера и передачу в форматах, предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные СПО АИИС КУЭ ЕНЭС (Метроскоп), установленного в ИВК, указаны в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
1	2
Идентификационное наименование ПО	СПО АИИС КУЭ ЕНЭС (Метроскоп)
Номер версии	не ниже 1.00
(идентификационный номер) ПО	не ниже 1.00
Цифровой идентификатор ПО	D233ED6393702747769A45DE8E67B57E

СПО АИИС КУЭ ЕНЭС (Метроскоп) не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав первого и второго уровней ИК АИИС КУЭ приведен в таблице 2. Метрологические характеристики АИИС КУЭ приведены в таблице 3.

Таблица 2 - Состав первого и второго уровней ИК АИИС КУЭ

	Пустатура		тав первого и второго	о уровней ИК	
№ ИК	Диспетчерское наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счётчик электрической энергии	ИВКЭ (УСПД)
1	2	3	4	5	6
1	ПС 330 кВ Выходной, ОРУ-330 кВ, ВЛ 330 кВ Серебрянская ГЭС 15 - Выходной	ТОГФ-330 кл.т 0,2S Ктт = 1000/1 Госреестр № 50370-12 ТФКН-330 кл.т 0,5 Ктт = 1000/1 Госреестр № 68554-17	НКФ-330-73 кл.т 0,5 Ктн = (330000/√3)/(100/√3) Госреестр № 1443-03	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
2	ПС 330 кВ Выходной, ОРУ-150 кВ, ВЛ 150 кВ Выходной - Мурманск №1 с отпайкой на ПС Пригородный (Л-171)	ТФНД-150 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = $(150000/\sqrt{3})/(100/\sqrt{3})$ Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
3	ПС 330 кВ Выходной, ОРУ-150 кВ, ВЛ 150 кВ Выходной - Мурманск №2 с отпайками (Л-172)	ТФНД-150 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = $(150000/\sqrt{3})/(100/\sqrt{3})$ Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
4	ПС 330 кВ Выходной, ОРУ-150 кВ, ВЛ 150 кВ Мончегорск 11А - Выходной №1 с отпайкой на ПС Оленегорск (Л-153)	ТФНД-150 кл.т 0,5 Ктт = 600/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
5	ПС 330 кВ Выходной, ОРУ-150 кВ, ВЛ 150 кВ Мончегорск 11 А - Выходной №2 с отпайкой на ПС Оленегорск (Л-154)	ТФНД-150 кл.т 0,5 Ктт = 600/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10

1	должение таблицы 2 2	3	4	5	6
1	<u> </u>	ТФНД-150	т		
6	ПС 330 кВ Выходной, ОРУ-150 кВ, ВЛ 150 кВ Нижне-Туломская ГЭС 13 - Выходной №1 (Л-173)	кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76 ТФЗМ 150-I У1 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
7	ПС 330 кВ Выходной, ОРУ-150 кВ, ВО-150	ТФНД-150 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76 ТФЗМ 150 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
8	ПС 330 кВ Выходной, ОРУ-150 кВ, ВЛ 150 кВ Нижне-Туломская ГЭС 13 - Выходной №2 (Л-174)	ТФНД-150 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
9	ПС 330 кВ Выходной, ОРУ-150 кВ, ВЛ 150 кВ Выходной - П.ф. Снежная (Л-219)	ТФНД-150-I кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
10	ПС 330 кВ Выходной, ОРУ-150 кВ, ВЛ 150 кВ Выходной - Снежногорск с отпайками (Л-170)	ТФНД-150-I кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
11	ПС 330 кВ Выходной, ОРУ-150 кВ, ВЛ 150 кВ Выходной - Мурманск №3 с отпайкой на ПС Долина Уюта (Л-179)	ТФЗМ 150 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10

1	2 2	3	4	5	6
12	ПС 330 кВ Выходной, ОРУ-150 кВ, ВЛ 150 кВ Выходной - Никель (Л-403)	ТФЗМ 150А-I У1 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
13	ПС 330 кВ Выходной, ОРУ-150 кВ, АТ-1 150 кВ	ТФНД-150 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
14	ПС 330 кВ Выходной, ОРУ-150 кВ, АТ-2 150 кВ	ТФНД-150 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76 ТФЗМ 150Б-I У1 кл.т 0,5 Ктт = 1200/5 Госреестр № 5313-76	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
15	ПС 330 кВ Выходной, ОРУ-150 кВ, В-150 Т-1 150 кВ	ТВ-ЭК 220 М3 кл.т 0,2S Ктт = 100/5 Госреестр № 56255-14	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
16	ПС 330 кВ Выходной, ОРУ-150 кВ, В-150 Т-2 150 кВ	ТВ-ЭК 220 М3 кл.т 0,2S Ктт = 100/5 Госреестр № 56255-14	DFK 245 кл.т 0,5 Ктн = (150000/√3)/(100/√3) Госреестр № 61410-15	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
17	ПС 330 кВ Выходной, ЗРУ-6 кВ, 2С 6 кВ, яч.26, ВЛ 6 кВ Ф-26	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10

1	должение таолицы 2 2	3	4	5	6
18	ПС 330 кВ Выходной, ЗРУ-6 кВ, 1С 6 кВ, яч.15, ВЛ 6 кВ Ф-15	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
19	ПС 330 кВ Выходной, ЗРУ-6 кВ, 1С 6 кВ, яч.21, ВЛ 6 кВ Ф-21	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
20	ПС 330 кВ Выходной, ЗРУ-6 кВ, 2С 6 кВ, яч.24, ВЛ 6 кВ Ф-24	ТПЛ-10 кл.т 0,5 Ктт = 400/5 Госреестр № 1276-59	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
21	ПС 330 кВ Выходной, ЗРУ-6 кВ, 2С 6 кВ, яч.28, ВЛ 6 кВ Ф-28	ТПЛ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1276-59	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
22	ПС 330 кВ Выходной, ЗРУ-6 кВ, 1С 6 кВ, яч.17, ВЛ 6 кВ Ф-17	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10

11pc	должение таблицы 2 2	3	4	5	6
23	2 ПС 330 кВ Выходной, ЗРУ-6 кВ, 2С 6 кВ, яч.14, ВЛ 6 кВ Ф-14	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
24	ПС 330 кВ Выходной, ЗРУ-6 кВ, 2С 6 кВ, яч.16, ВЛ 6 кВ Ф-16	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
25	ПС 330 кВ Выходной, ЗРУ-6 кВ, 1С 6 кВ, яч.25, ВЛ 6 кВ Ф-25	ТВЛМ-10 кл.т 0,5 Ктт = 150/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
26	ПС 330 кВ Выходной, ЗРУ-6 кВ, 1С 6 кВ, яч.23, ВЛ 6 кВ Ф-23	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
27	ПС 330 кВ Выходной, ЗРУ-6 кВ, 2С 6 кВ, яч.18, ВЛ 6 кВ Ф-18	ТПЛ-10 кл.т 0,5 Ктт = 200/5 Госреестр № 1276-59	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10

	рдолжение таблицы 2 2	3	4	5	6
1	2	3	-	3	6
28	ПС 330 кВ Выходной, ЗРУ-6 кВ, 1С 6 кВ, яч.13, ВЛ 6 кВ Ф-13	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
29	ПС 330 кВ Выходной, ЗРУ-6 кВ, 1С 6 кВ, яч.27, ВЛ 6 кВ Ф-27	ТВЛМ-10 кл.т 0,5 Ктт = 150/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
30	ПС 330 кВ Выходной, ЗРУ-6 кВ, 1С 6 кВ, яч.9, Т-1 6 кВ	ТПШЛ-10 кл.т 0,5 Ктт = 2000/5 Госреестр № 1423-60	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
31	ПС 330 кВ Выходной, ЗРУ-6 кВ, 2С 6 кВ, яч.10, Т-2 6 кВ	ТПШЛ-10 кл.т 0,5 Ктт = 2000/5 Госреестр № 1423-60	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10

1	2 2	3	4	5	6
32	ПС 330 кВ Выходной, ЗРУ-6 кВ, 1С 6 кВ, яч.19, ТСН-1 6 кВ	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
33	ПС 330 кВ Выходной, ЗРУ-6 кВ, 2С 6 кВ, яч.20, ТСН-2 6 кВ	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10
34	ПС 330 кВ Выходной, ЗРУ-6 кВ, 2С 6 кВ, яч.22, ВЛ 6 кВ Ф-22	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Госреестр № 1856-63	НТМИ-6 кл.т 0,5 Ктн = 6000/100 Госреестр № 831-53 НТМИ-6-66, кл.т 0,5 Ктн = 6000/100 Госреестр № 2611-70	A1802RALQ- P4GB-DW-4 кл.т 0,2S/0,5 Госреестр № 31857-11	RTU-325Т Госреестр № 44626-10

Таблица 3 - Метрологические характеристики

таолица 3 - Метрологические характеристики							
		Границы интервала допускаемой относительной погрешности					
		ИК при измерении активной электрической энергии в рабочих					
Номер ИК	cosφ	условиях эксплу	уатации АИИС	КУЭ (d), %, при	доверительной		
Помер ик	COSΨ	вероятности, равной 0,95					
		$d_{1(2)\%}$,	$d_{5\%},$	$d_{20\%},$	d _{100 %} ,		
		$I_{1(2)\%} \mathfrak{L} I_{_{M3M}} < I_{_{5} \%}$	I_{5} %£ $I_{изм}$ < I_{20} %	I_{20} %£ $I_{_{\rm H3M}}$ < $I_{100\%}$	I_{100} %£ $I_{изм}$ £ $I_{120\%}$		
	1,0	-	±1,9	±1,2	±1,0		
1 - 14, 17 - 34	0,9	-	±2,4	±1,4	±1,2		
(Счетчик 0,2S;	0,8	-	±2,9	±1,7	±1,4		
TT 0,5; TH 0,5)	0,7	-	±3,6	±2,0	±1,6		
	0,5	-	±5,5	±3,0	±2,3		
	1,0	±1,3	±1,0	±0,9	±0,9		
15, 16	0,9	±1,3	±1,1	±1,0	±1,0		
(Счетчик 0,2S;	0,8	±1,5	±1,2	±1,1	±1,1		
TT 0,2S; TH 0,5)	0,7	±1,6	±1,3	±1,2	±1,2		
	0,5	±2,2	±1,8	±1,6	±1,6		
		Границы интервала допускаемой относительной погрешь					
		ИК при измерении реактивной электрической энергии в					
Hoven MV	2000			щии АИИС КУЗ			
Номер ИК	cosφ	доверительной вероятности, равной 0,95					
		$d_{1(2)\%}$,	$d_{5\%},$	$d_{20\%},$	d _{100 %} ,		
		$I_{1(2)\%} \mathfrak{L} I_{_{M3M}} < I_{_{5} \%}$	I_{5} %£ $I_{изм}$ < I_{20} %	I_{20} %£ $I_{_{\rm H3M}}$ < $I_{100\%}$	I_{100} %£ $I_{изм}$ £ $I_{120\%}$		
1 - 14, 17 - 34	0,9	-	±6,6	±3,8	±3,0		
(Счетчик 0,5;	0,8	-	±4,6	±2,8	±2,3		
TT 0,5; TH 0,5)	0,7	-	±3,8	$\pm 2,4$	±2,0		
11 0,5, 111 0,5)	0,5	-	±3,0	±2,0	±1,7		
15 16	0,9	±3,0	±2,5	±2,3	±2,3		
15, 16 (Счетчик 0,5; TT 0,2S; TH 0,5)	0,8	±2,4	±2,2	±1,9	±1,9		
	0,7	±2,2	±2,0	±1,7	±1,7		
11 0,20, 111 0,3)	0,5	±2,0	±1,9	±1,6	±1,6		
Погрешность системного	Погрешность системного времени АИИС КУЭ, с						

Примечания:

- 1 Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$.
- 2 Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой).
 - 3 Нормальные условия эксплуатации:

Параметры сети:

- диапазон напряжения от 0,99·U_н до 1,01·U_н;
- диапазон силы тока от $0.01 \cdot I_{\rm H}$ до $1.2 \cdot I_{\rm H}$;
- температура окружающего воздуха: TT и TH от минус 40 до плюс 50 °C; счетчиков от плюс 18 до плюс 25 °C; УСПД от плюс 10 до плюс 30 °C; ИВК от плюс 10 до плюс 30 °C;
 - частота (50±0,15) Гц.
 - 4 Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения от $0.9 \cdot \text{Uh1}$ до $1.1 \cdot \text{Uh1}$; диапазон силы первичного тока - от $0.01 \cdot I_{\text{H1}}$ до $1.2 \cdot I_{\text{H1}}$;

- частота (50±0,4) Гц;
- температура окружающего воздуха от минус 40 до плюс 50 °C.

Для счетчиков электроэнергии:

- параметры сети: диапазон вторичного напряжения от $0.8 \cdot U_{\rm H2}$ до $1.15 \cdot U_{\rm H2}$; диапазон силы вторичного тока от $0.01 \cdot I_{\rm H2}$ до $2 \cdot I_{\rm H2}$;
 - частота (50±0,4) Гц;
 - температура окружающего воздуха от плюс 10 до плюс 30 °C.
- 5 Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2.
- 6 Виды измеряемой электроэнергии для всех ИК, перечисленных в таблице 2 активная, реактивная.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчики электроэнергии «Альфа A1800» среднее время наработки на отказ не менее 120000 часов;
- УСПД среднее время наработки на отказ не менее 55 000 часов, среднее время восстановления работоспособности 1 час.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
 - в журналах событий счетчиков и УСПД фиксируются факты:
 - параметрирования;
 - пропадания напряжения;
 - коррекция шкалы времени.

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - счетчиков электроэнергии;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД.
- наличие защиты на программном уровне:
 - пароль на счетчиках электроэнергии;
 - пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции шкалы времени в:

- счетчиках электроэнергии (функция автоматизирована);
- УСПД (функция автоматизирована).

Глубина хранения информации:

- счетчики электроэнергии тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 5 лет;
- ИВКЭ суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 суток; при отключении питания не менее 5 лет.

- ИВК - суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу - не менее 3,5 лет.

Знак утверждения типа

наносится на титульный лист формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Таблица 4 - Комплектность средства измерений

Наименование	Тип	Количество,
паименование	ТИП	шт.
Трансформатор тока	ТОГФ-330	3
Трансформатор тока	ТФКН-330	3
Трансформатор тока	ТФНД-150	23
Трансформатор тока	ТФЗМ 150-І У1	1
Трансформатор тока	ТФ3M 150	5
Трансформатор тока	ТФНД-150-І	6
Трансформатор тока	ТФЗМ 150А-І У1	3
Трансформатор тока	ТФЗМ 150Б-І У1	1
Трансформатор тока	ТВ-ЭК 220 М3	6
Трансформатор тока	ТВЛМ-10	26
Трансформатор тока	ТПЛ-10	6
Трансформатор тока	ТПШЛ-10	4
Трансформатор напряжения	НКФ-330-73	3
Трансформатор напряжения	DFK 245	6
Трансформатор напряжения	НТМИ-6	2
Счетчик электрической энергии	A 1902D A LO DACD DW A	34
многофункциональный	A1802RALQ-P4GB-DW-4	34
Устройство сбора и передачи данных	RTU-325T	1
Методика поверки	РТ-МП-4937-500-2017	1
Формуляр	АУВП.411711.ФСК.РИК.020.04ФО	1

Поверка

осуществляется по документу РТ-МП-4937-500-2017 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ Выходной. Методика поверки», утвержденному ФБУ «Ростест-Москва» 26.10.2017 г.

Основные средства поверки:

- средства поверки в соответствии с нормативными документами на средства измерений, входящие в состав АИИС КУЭ;
- прибор для измерения электроэнергетических величин и показателей качества электрической энергии Энергомонитор-3.3T1, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 39952-08;
- вольтамперфазометр ПАРМА ВАФ-А, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 22029-10;
- радиочасы МИР РЧ-02, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 46656-11;
- термогигрометр ИВА-6, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 46434-11.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого средства измерений с требуемой точностью.

Знак поверки, в виде оттиска поверительного клейма и (или) наклейки, наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений количества электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ Выходной».

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ Выходной

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Публичное акционерное общество «Федеральная сетевая компания Единой энергетической системы» (ПАО «ФСК ЕЭС»)

ИНН 4716016979

Адрес: 117630, г. Москва, ул. Академика Челомея, 5А

Телефон: +7 (495) 710-93-33

Заявитель

Филиал Общества с ограниченной ответственностью Управляющая компания «РусЭнергоМир» в г. Москве (Филиал ООО УК «РусЭнергоМир» в г. Москве)

Адрес: 123557, г. Москва, ул. Пресненский вал, д. 14, 3 этаж

Телефон: +7 (499) 750-04-06

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418 г. Москва, Нахимовский проспект, 31

Телефон: +7 (495) 544-00-00

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310639 от 16.04.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубен
	М.п.	« »	2017