ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи измерительные активной мощности трехфазного тока Е848-М1

Назначение средства измерений

Преобразователи измерительные активной мощности трехфазного тока E848-M1 (в дальнейшем — ИП) предназначены для линейного преобразования активной мощности трехфазных и однофазных четырехпроводных и трехпроводных цепей переменного тока в унифицированный выходной сигнал постоянного тока.

Описание средства измерений

По способу преобразования ИП E848-M1 относятся к преобразователям с время-импульсной модуляцией.

ИП применяют для контроля токов и напряжений постоянного тока электрических систем и установок в бортовой и стационарной аппаратуре технической диагностики подвижного состава железных дорог, для комплексной автоматизации объектов электроэнергетики, в автоматизированных системах управления технологическими процессами энергоемких объектов различных отраслей промышленности, включая атомные станции.

ИП выполнены в пластмассовом корпусе, предназначенном для навесного монтажа на щитах и панелях, с передним присоединением монтажных проводов.

Конструктивно ИП состоят из следующих основных узлов: основания; крышки; крышки клеммной колодки; контактных узлов; трансформатора; трех печатных плат для ИП E848/1-M1 – E848/5-M1 или двух печатных плат для E848/6-M1 – E848/18-M1; одна из указанных плат является несущей, на которой крепятся остальные печатные платы.

Контактные узлы, установленные в основании, обеспечивают контакт с подводящими проводами. Крышки контактных узлов защищают контактные узлы от попадания на них посторонних предметов.

ИП относятся к оборудованию, эксплуатируемому в стационарных условиях производственных помещений, вне жилых домов.

ИП имеют модификации, отличия между которыми приведены в таблице 1. ИП имеют исполнения: обычное, общеклиматическое (04.1**), экспортное, предназначенное для атомных станций (AC).

Фотография общего вида ИП приведена на рисунке 1, схема пломбировки от несанкционированного доступа, с указанием места для нанесения оттиска клейма ОТК и места нанесения знака поверки на ИП приведены на рисунке 2.

Рисунок 1 – Внешний вид ИП

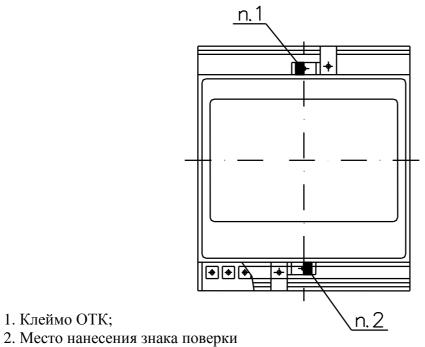


Рисунок 2 – Схема пломбировки от несанкционированного доступа, с указанием места для клейма ОТК и места нанесения знака поверки средств измерений на ИП

Программное обеспечение отсутствует.

Метрологические и технические характеристики

Основные метрологические и технические характеристики ИП приведены в таблицах 1-4.

(вид сверху)

Таблица 1 - Диапазоны измерения сигналов, в зависимости от модификации ИП.

	Диапазон измерения преобразуемого			Диапазон изменения		
Тип и мо-	входного сигнала			выходного сигнала		Поромотрия
дификация	Ток (I) ²⁾ ,	Напряже-	Коэффициент		Напря-	Параметры питания ²⁾
ИП		ние (U),	мощности	Ток, мА	жение,	кинатин
	A	В	$\cos j$, $(\sin j)^{3}$		В	
1	2	3	4	5	6	7
E848/1-M1			от 0 до +1 до 0	от 0 до 5	-	
E848/2-M1	от 0 до	от 80 до 120	от 0 до -1 до 0 до +1 до 0	от -5 до 0 до +5	-	от измеритель- ной цепи
E848/3-M1			от 0 до +1 до 0	от 0 до 5	-	220 B, 240 B,
E848/4-M1	от 0 до		от 0 до -1 до	от -5 до	-	от 45 до 65 Гц
L040/4 WII	0,5)		0 до +1 до 0	0 до +5		
E848/5-M1	или	от 80 до 120	от 0 до +1 до 0	от 4 до 20	-	от измеритель- ной цепи
E848/6-M1	от 0 до 5 (от 0 до 2,5)	от 0 до 60 от 0 до 120 от 0 до 250 от 0 до 450	от 0 до -1 до 0 до +1 до 0	от -5 до 0 до +5	-	220 В, 240 В, от 45 до 65 Гц
E848/7-M1		от 0 до 60 от 0 до 120	0 до +1 до 0	-	от -10	01 43 до 03 1 ц
					до 0	
		01 0 до 120			до +10	

1	2	3	4	5	6	7
E848/8-M1		от 80 до 120	om 0 mo +1 mo 0	от 0 до 5	-	от измеритель- ной цепи
E848/9-M1		от 0 до 120	от 0 до +1 до 0	01 0 до 3	1	220 В, 240 В, от 45 до 65 Гц
E848/10-M1	0 - 1 (0 - 0,5) или 0 - 5 (0 - 2,5)	от 80 120	от 0 до -1 до	от -5 до	1	от измеритель- ной цепи
E848/11-M1		от 0 до 120	0 до +1 до 0	0 до +5	-	220 В, 240 В, от 45 до 65 Гц
E848/12-M1		от 0 до 120	от 0 до +1 до 0	от 0 до 2,5 до 5,0	ı	100 В, 220 В, 240 В, от 45 до 65 Гц
E848/13-M1		от 80 до 120	ого до +1 до о	от 4 до 20	-	от измеритель- ной цепи
E848/14-M1					-	
E848/15-M1		om 0 vo 120	от 0 до -1 до 0 до +1 до 0	от 4 до 12 до 20	ı	220 B, 240 B,
E848/16-M1		от 0 до 120	от 0 до +1 до 0	от 0 до 20	-	от 45 до 65 Гц
E848/17-M1			от 0 до -1 до 0 до +1 до 0	от 0 до 10 до 20	-	
E848/18-M1		от 80 до 120	от 0 до +1 до 0	от 0 до 20	1	от измеритель- ной цепи

Примечания:

- 1. Графа «Тип, модификация ИП» включает исполнения: обычное, общеклиматическое (04.1**), экспортное, предназначенное для атомных станций (АС) и тепловых электро-станций (ТЭС) в сейсмостойком исполнении.
- 2. Ток преобразуемого входного сигнала и напряжение питания (для ИП с дополни-тельным питанием) указываются при заказе.
- 3. Номинальное значение коэффициента мощности: 1,0 (минус 1,0).

Таблица 2 – Основные метрологические характеристики

Наименование характеристики	Значение
Нормирующее значение выходного сигнала:	
- для E848/1-M1 – E848/4-M1, E848/6-M1, E848/8-M1 – E848/12-M1,	
MA;	5
- для E848/5-M1, E848/13-M1 – E848/18-M1, мA;	20
- для E848/7-M1, B	10
Пределы допускаемой основной приведенной погрешности от	
нормирующего значения выходного сигнала, %	± 0.5
Номинальное напряжение сети, В	220 или 240
Номинальная частота сети, Гц	50 или 60

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Потребляемая мощность от измерительной цепи, В-А, не более:	
- для каждой последовательной цепи фазы А, В или С;	0,3
- для параллельных цепей фазы В;	0,2
- для параллельных цепи фазы А или С для модификаци:й	
- E848/1-M1, E848/2-M1, E848/8-M1, E848/10-M1, E848/13-M1,	
E848/18-M1	5,0
- E848/5-M1;	6,0
- для параллельной цепи фазы А или С для модификаций	
E848/3-M1, E848/4-M1, E848/7-M1, E848/9-M1, E848/11-M1,	
E848/12-M1, E848/14-M1, E848/15-M1, E848/16-M1, E848/17-M1	0,2
Потребляемая мощность от дополнительной цепи питания для	
модификаций Е848/3-М1, Е848/4-М1, Е848/6-М1, Е848/7-М1,	
E848/9-M1, E848/11-M1, E848/12-M1, E848/14-M1, E848/15-M1,	
E848/16-M1, E848/17-M1, ВхА, не более	5,0
Пределы допускаемой приведенной погрешности от нормирующего	
значения выходного сигнала, %	$\pm 0,5$
Диапазон рабочих температур, °С	от -50 до +50
Относительная влажность при температуре +35 °C, %	от 92 до 98
Габаритные размеры (длина×ширина×высота), мм, не более	125×110×125
Масса, кг, не более	1,2
Средняя наработка на отказ, ч, не менее	50 000
Средний срок службы, лет, не менее	12

Таблица 4 - Мощность, потребляемая модификацией Е848/6-М1 от измерительной цепи

- worse-qui					
Номинальное значение	Мощность, потребляемая от	Мощность, потребляемая			
преобразуемого входного	фазы A или C, B·A	от фазы В, В∙А			
сигнала, В					
50	0,2	0,3			
100	0,3	0,5			
220	0,6	1,0			
380	1,0	1,5			

Знак утверждения типа

Знак утверждения типа наносится табличку ИП фотохимическим способом и на титульные листы эксплуатационной документации типографским способом.

Комплектность средства измерений

Комплектность ИП представлена в таблице 5.

Таблица 5

Наименование	Обозначение	Количество
Преобразователь измерительный активной мощности трехфазного тока E848-M1 (модификация по заказу)	-	1
Паспорт	-	1
Руководство по эксплуатации	3ПМ.499.322 РЭ	1*
Методика поверки	МП.ВТ.175-2007	1**
Упаковка	-	1

^{* -} допускается 1 экз. на 3 изделия при поставке партии в один адрес;

^{** -} при одновременной поставке в один адрес, но не менее 1 экз. в каждый транспортный ящик.

Поверка

осуществляется по документу МП.ВТ.175-2007 «Преобразователи измерительные активной мощности трехфазного тока E848-M1. Методика поверки», согласованному РУП «Витебский ЦСМС» 21.09.2007 г.

Основные средства поверки:

компаратор напряжений Р3003 (регистрационный № 7476-91);

амперметр Д5098 (Регистрационный № 10216-85);

вольтметр Д5103 (регистрационный № 10217-85);

ваттметр Д5104 (регистрационный № 10218-85);

катушка сопротивлений образцовая Р3030: 10 Ом, 100 Ом, кл.т.0,002 (регистрационный № 1162-58);

магазин сопротивлений РЗЗ (регистрационный № 1321-60);

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится в виде оттиска поверительного клейма на мастику, уложенную в углубление корпуса над одним из крепежных винтов ИП, и в виде печати в паспорт или в свидетельство о поверке ИП.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к преобразователям измерительным активной мощности трехфазного тока E848-M1

ГОСТ 24855-81 Преобразователи измерительные тока, напряжения, мощности, частоты, сопротивления аналоговые. Общие технические условия

ТУ РБ 05796073.141-98 Преобразователи измерительные активной мощности трехфазного тока E848-M1

Изготовитель

Открытое акционерное общество «Витебский завод электроизмерительных приборов» (ОАО «ВЗЭП»), Республика Беларусь

Адрес: 210630, г. Витебск, ул. Ильинского, д.19/18

Тел.: 10 375 (212) 67-03-71 E-mail: <u>vzep.info@gmail.com</u> Web-сайт: www.vzep.vitebsk.by

Испытательный центр

Экспертиза проведена Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологической службы»

(ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Тел.: 8 (495) 437-55-77 Факс: 8 (495) 437-56-66 E-mail: <u>office@vniims.ru</u>

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____ 2018 г.