ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Расходомеры ультразвуковые «КТМ Ультраволна 63 С», «КТМ Ультраволна 63 П», «КТМ Ультраволна 63 Ех»

Назначение средства измерений

Расходомеры ультразвуковые «КТМ Ультраволна 63 С», «КТМ Ультраволна 63 П», «КТМ Ультраволна 63 Ех» предназначены для измерений расхода жидких сред.

Описание средства измерений

Расходомеры ультразвуковые «КТМ Ультраволна 63 С», «КТМ Ультраволна 63 П», «КТМ Ультраволна 63 Ех» используют принцип дифференциального (разностного) определения времени прохождения ультразвукового сигнала в движущемся потоке жидкости. Разность времени прохождения ультразвукового сигнала пропорциональна скорости распространения жидкости в трубопроводе.

Прибор состоит из вычислительного блока и одного или двух комплектов накладных ультразвуковых приёмопередатчиков. Комплект накладных приёмопередатчиков состоит из двух штук.

Накладные приёмопередатчики располагаются на поверхности трубопровода вдоль его продольной оси. В состав каждого приёмопередатчика входят излучатель и приёмник ультразвукового сигнала.

Вычислительный блок обрабатывает данные, полученные от приёмопередатчиков, отображает измерительную информацию на жидкокристаллическом дисплее и преобразует её в нормированные аналоговые или импульсные сигналы.

Вычислительные блоки выполнены в герметичных пластиковых или металлических корпусах, внутри которых расположены электрические схемы и элементы подключения внешних цепей. Количество измерительных каналов может быть 1 или 2 (по заказу).

Вычислительные блоки выпускаются в следующих исполнениях:

«КТМ Ультраволна 63 С» - стационарное исполнение (рисунок 1а, 1б).

«КТМ Ультраволна 63 П» - портативное исполнение (рисунок 1в).

Модификации накладных приёмопередатчиков изображены на рисунках 2а - 2в.

Рисунок 1а - Вычислительный блок «КТМ Ультраволна 63 С»

Рисунок 1б - Вычислительный блок «КТМ Ультраволна 63 С Ex»

Рисунок 1в - Вычислительный блок «КТМ Ультраволна 63 П»

Рисунок 2a - Ультразвуковой приёмопередатчик XUC-FW F21, для труб диаметром DN10 - DN100

Рисунок 2б - Ультразвуковой приёмопередатчик XUC-FW F05, для труб диаметром DN200 -DN1500

Рисунок 2в - Ультразвуковой приёмопередатчик XUC-FW-F10, для труб диаметром DN32 - DN400

В вычислительных блоках предусмотрен цифровой интерфейс miniUSB и RS232 или RS485.

В качестве дополнительной опции вычислительные блоки могут измерять температуру при помощи специальных накладных датчиков температуры и вычислять количество теплоты.

Пломбирование вычислительных блоков «КТМ Ультраволна 63 С» осуществляется в соответствии с рисунком 3.

Рисунок 3 - Схема пломбировки вычислительного блока «КТМ Ультраволна 63 С» от несанкционированного доступа

Пломбирование вычислительных блоков «КТМ Ультраволна 63 П» не предусмотрено.

Программное обеспечение

Встроенное программное обеспечение (далее - ΠO) используется для сбора, обработки, отображения и передачи на периферийные устройства информации об измерениях.

Идентификационные данные программного обеспечения (ПО) приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	sysctrol.hex	
Номер версии (идентификационный номер) ПО	не ниже 1.21.хх	
Цифровой идентификатор ПО*	0xfd007a70	
Примечание: * - контрольная сумма метрологически значимой части		

Информация о версии программного обеспечения доступна для просмотра на жидкокристаллическом дисплее при включении расходомера.

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение
Диаметры трубопроводов, мм	от 10 до 1500
Диапазон измерений скорости потока, м/с	
- в диапазоне диаметров 10 < DN ≤ 1200	от 0 до 20
- в диапазоне диаметров 1200 < DN ≤ 1500	от 0 до 12
Пределы допускаемой относительной погрешности измерений	
расхода, %	
- в диапазоне скоростей $2 \le v < 20$ м/с	±1,0
$-$ в диапазоне скоростей $0.5 \le v < 2$ м/с	±2,5
- в диапазоне скоростей $0 \le v < 0,5$ м/с	±5,0

Таблица 3 - Основные технические характеристики

Наименование характеристики	Значение
Температура измеряемой среды, °С	от -40 до +150
Выходные сигналы:	
- ток, мА	от 4 до 20 (2 канала)
- импульсы, Гц	до 1000 (1 или 2 канала)
- релейный	1 канал
Напряжение питания:	
- переменного тока, В	220±22
- постоянного тока, В	от 18 до 36
Время автономной работы от аккумулятора, ч, не менее*	3; 20
Потребляемая мощность, Вт, не более	10
Максимальная длина кабеля от вычислителя до ультразвуковых	
приёмопередатчиков, м, не более	350
Условия применения:	
- температура воздуха, °С	от -20 до +60
с утепляющим чехлом, °С	от -65 до +60
- относительная влажность, %	от 20 до 95 (без конденсата)
- атмосферное давление, кПа	от 84 до 106

Продолжение таблицы 3

Наименование характеристики	Значение		
Класс защиты по ГОСТ 14254-2015			
- для исполнения «КТМ Ультраволна 63 П»	IP54		
- для исполнения «КТМ Ультраволна 63 С»	IP65		
- для исполнения «КТМ Ультраволна 63 С Ex»	IP66		
- для приёмопередатчиков	IP65, IP68		
Габаритные размеры вычислительных блоков:			
- для исполнения «КТМ Ультраволна 63 П», мм, не более	265×190×70		
- для исполнения «КТМ Ультраволна 63 С», мм, не более	260×240×120		
- для исполнения «КТМ Ультраволна 63 С Ex», мм, не более	500×350×200		
Габаритные размеры приемопередатчиков, мм, не более:	157×50×58		
Масса вычислительных блоков:			
- для исполнения «КТМ Ультраволна 63 П», кг, не более	1,5		
- для исполнения «КТМ Ультраволна 63 С», кг, не более	1,3		
- для исполнения «КТМ Ультраволна 63 С Ex», кг, не более	17,2		
Маркировка взрывозащиты:			
- для вычислительных блоков «КТМ Ультраволна 63 С Ex»	IEx d IIC T6 Gb или		
	IEx d IIB+H2 T5 Gb X		
- для приёмопередатчиков	IEx d IIC T6T3 Gb X		
Примечание: * - для разных типов аккумуляторов.			

Знак утверждения типа

наносится типографским способом на эксплуатационную документацию и на переднюю панель вычислительного блока методом офсетной печати или лазерной гравировки.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
	«КТМ Ультраволна 63 С»,	
Расходомер ультразвуковой	«КТМ Ультраволна 63 П»,	1 шт.
	«КТМ Ультраволна 63 Ex»	
Ультразвуковые приёмопередатчики	XUC-FW	по заказу
Паспорт	ПС4213-003-20642404-2017	1 экз.
Руководство по эксплуатации	P94213-003-20642404-2017	1 экз.
Методика поверки	РТ-МП-4346-449-2017	1 экз.
Комплект присоединительной арматуры		1 комп.

Поверка

осуществляется по документу РТ-МП-4346-449-2017 «ГСИ. Расходомеры ультразвуковые «КТМ Ультраволна 63 С», «КТМ Ультраволна 63 П», «КТМ Ультраволна 63 Ех», утвержденному ФБУ «Ростест-Москва» 30.11.2017 г.

Основные средства поверки:

- установка поверочная расходомерная ТАЙФУН, мод. ТАЙФУН-1000 (регистрационный номер в Федеральном информационном фонде 60684-15);
- толщиномер ультразвуковой 26MG (регистрационный номер в Федеральном информационном фонде 29754-05);
- штангенциркуль ABSOLUTE Digimatic серии 551 (регистрационный номер в Федеральном информационном фонде 49805-12);

- рулетка измерительная металлическая UM5M, (регистрационный номер в Федеральном информационном фонде 22003-07);
- термометр цифровой малогабаритный ТЦМ 9410 (регистрационный номер в Федеральном информационном фонде 32156-06);
- вольтметр универсальный В7-78/1 (регистрационный номер в Федеральном информационном фонде 52147-12).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке или в паспорт.

Сведения о методиках (методах) измерений:

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к расходомерам ультразвуковым «КТМ Ультраволна 63 С», «КТМ Ультраволна 63 П», «КТМ Ультраволна 63 Ех»

ТУ 4213-003-20642404-2015 Расходомеры ультразвуковые «КТМ Ультраволна 63 С», «КТМ Ультраволна 63 П», «КТМ Ультраволна 63 Ех». Технические условия

Изготовитель

Общество с ограниченной ответственностью «НПП КуйбышевТелеком-Метрология» (ООО «НПП КуйбышевТелеком-Метрология»)

ИНН 6312102369

Адрес: 443052, г. Самара, ул. Земеца, д. 26Б, комната 413

Телефон (факс): +7(846)202-00-65, 206-01-80

E-mail: info@ktkprom.com

Web-сайт: http://www.ktkprom.com

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве»

Адрес: 117418, г. Москва, Нахимовский пр., 31

Телефон: +7(495)544-00-00 E-mail: info@rostest.ru

Web-сайт: http://www.rostest.ru

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310639 от 16.04.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	M -		2010 -
	М.п.	« »	2018 г.