ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы жидкости комбинированные М200

Назначение средства измерений

Анализаторы жидкости комбинированные M200 предназначены для измерений рН, окислительно-восстановительного потенциала (ОВП), удельной электрической проводимости (УЭП), массовой концентрации растворенного кислорода и температуры (Т) жидких сред.

Описание средства измерений

Принцип действия канала измерения температуры основан на преобразовании электрического сигнала, поступающего в электронный блок от первичного преобразователя, сопротивление которого изменяется при изменении температуры воды, пропорционально измеряемой величине.

Принцип действия канала измерения рН основан на измерении ЭДС электродной системы, образуемой рН-электродами.

Электроды рН со встроенным датчиком температуры, благодаря дополнительному платиновому электроду, могут использоваться в качестве датчиков ОВП.

Принцип действия канала измерения ОВП основан на измерении ЭДС электродной системы, образуемой растворозаземляющим контактом и электродом сравнения (только для датчиков рН).

Принцип действия канала измерения УЭП жидких сред основан на измерении сопротивления между электродами в первичном преобразователе (кондуктометрическом датчике).

Принцип действия каналов измерения массовой концентрации растворенного кислорода основан на измерении силы тока между электродами в первичном преобразователе (амперометрическом датчике).

Анализаторы выпускаются в одноканальной и двухканальной модификациях состоят из микропроцессорного блока и соответствующих первичных преобразователей (далее - электродов/датчиков). Анализаторы М200 позволяют проводить измерение рН и ОВП или УЭП или концентрации растворенного кислорода (для двухканальной модификации - два параметра в любых сочетаниях) и температуры. Количество одновременно измеряемых параметров - до двух для одноканальной модификации и до четырех для двухканальной. В приборе предусмотрена температурная компенсация результатов измерений. К прибору можно подключать только цифровые датчики с маркировкой «ISM».

Анализаторы имеют до четырех свободно программируемых аналоговых токовых выходов от 0 (4) до 20 мА для передачи измеренных значений на соответствующие регистрирующие устройства.

Анализаторы поставляются в исполнениях 1/2DIN для настенного, панельного и трубного монтажа и 1/4DIN для панельного монтажа. Класс промышленной защиты IP65.

Общий вид анализаторов жидкости комбинированных М200 представлен на рисунке 1.

Исполнение 1/4DIN Исполнение 1/2DIN Рисунок 1 - Общий вид средства измерений

Исполнение 1/4DIN

Исполнение 1/2DIN

Рисунок 2 - Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки

Программное обеспечение

Анализаторы имеют встроенное программное обеспечение, разработанное для выполнения измерений, передачи и просмотра результатов измерений в реальном времени на дисплее измерительного блока.

Встроенное ΠO защищено на аппаратном уровне (опломбирование) от несанкционированной подмены программного модуля.

Защита ПО от преднамеренных и непреднамеренных изменений соответствует уровню «средний» по Р 50.2.077-2014.

Влияние программного обеспечения на метрологические характеристики анализаторов учтено при нормировании метрологических характеристик.

Таблица 1 - Идентификационные данные (признаки) метрологически значимой части ПО.

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	-
Номер версии (идентификационный номер) ПО	не ниже 1.0.05

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Таблица 2 - Метрологические характеристики	,	
Наименование характеристики	Значение	
Диапазон показаний:		
- pH	от -2 до +16	
- ОВП, мВ	от -1500 до +1500	
- УЭП:		
- с 2-электродным датчиком, мСм/см	от 0 до 40000	
- с 4-электродным датчиком, мСм/см	от 0,01 до 650	
- массовая концентрация растворенного		
кислорода, ppm (мг/л)	от 0,00 до 50,00	
- T, °C:		
- с датчиком рН/ОВП	от -30 до +130	
- с датчиком УЭП	от -40 до +200	
- с датчиком растворенного кислорода	от -10 до +80	
Диапазон измерений:		
- pH	от 1 до 14	
- ОВП, мВ	от -1500 до +1500	
- УЭП, мкСм/см:		
- с 2-электродным датчиком:		
- с константой ячейки 0,1 см ⁻¹	от 0,01 до 50000	
- с константой ячейки 0,01 см ⁻¹	от 0,001 до 500	
- с 4-электродным датчиком	от 20 до 500000	
- массовая концентрация растворённого		
кислорода, мкг/дм ³	от 6 до 20000	
- T, °C:	от -5 до +90	
Пределы допускаемой абсолютной		
погрешности при измерении:		
- pH	±0,05	
- T, °C	±0,3	
Пределы допускаемой относительной		
погрешности при измерении УЭП жидких		
сред, %	±5	
Пределы допускаемой относительной		
погрешности при измерении массовой		
концентрации растворённого кислорода, %	±2	
Пределы допускаемой абсолютной		
погрешности измерений окислительно-		
восстановительного потенциала (ОВП), мВ	±6	

Таблица 3 - Основные технические характеристики

Наименование характеристики	Значение	
Параметры электропитание:		
- напряжение, В	от 100 до 240	
- частота, Гц	от 50 до 60	
- потребляемая мощность, ВА, не более	10	
Габаритные размеры преобразователя		
длина× ширина× высота, мм, не более:		
- 1/2DIN	150×116×150	
- 1/4DIN	102×140×102	
Масса преобразователя, кг, не более:		
- 1/2DIN	1	
- 1/4DIN	0,7	
Условия эксплуатации:		
- температура анализируемой среды, °С		
- температура окружающей среды, °С	от -20 до +150	
- относительная влажность воздуха, %,	от -10 до +50	
не более	95 (без конденсации)	
- атмосферное давление, кПа	от 84,0 до 106,7	
Средний срок службы, лет	10	
Средняя наработка на отказ, ч	7000	

Знак утверждения типа

наносится на анализаторы в виде клеевой этикетки и на титульных листах Руководств по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
Анализатор (блок микропроцессорный)	-	1 шт.
Первичные преобразователи ¹⁾	-	1 компл.
Набор комплектующих ²⁾	-	1 компл.
Руководство по эксплуатации	-	1 экз.

¹⁾ Электроды и датчики из нижеперечисленных:

- первичные преобразователи pH: InPro325xi, InPro426xi, InPro480xi, InPro310xi, InPro 200xi, pHUre;
- первичные преобразователи УЭП 2-хэлектродные: UniCond2e;
- первичные преобразователи УЭП 4-хэлектродные InPro71xxi, UniCond4e;
- датчики растворенного кислорода амперометрические InPro68xx(G)i, InPro69xx(G)i;
- 2) Соединительные кабели для электродов и датчиков.

Дополнительная комплектация по требованию заказчика:

- монтажные корпуса.
- комплекты запасных мембран.
- устройства для тестирования анализатора.
- устройства для тестирования электродов и датчиков.
- внутренние электролиты и чистящие растворы.
- градуировочные растворы pH с номинальными значениями (2,00; 4,01; 7,00; 9,21; 10,00; 11,00);
 - градуировочные растворы УЭП (12,88 мСм/см; 1413 мкСм/см; 84 мкСм/см).

Поверка

осуществляется по документам ГОСТ Р 8.722-2010 «ГСИ. Анализаторы жидкости кондуктометрические. Методика поверки» при измерении удельной электрической проводимости; ГОСТ Р 8.857-2013 «ГСИ. рН-метры. Методика поверки» при измерении рН и температуры; Р 50.2.045-2005 «ГСИ. Анализаторы растворенного в воде кислорода. Методика поверки» при измерении массовой концентрации растворенного кислорода; ГОСТ 8.639-2014 «ГСИ. Электроды для определения окислительно-восстановительного потенциала. Методика поверки» при измерении окислительно-восстановительного потенциала.

Основные средства поверки:

- рабочие эталоны рН 2-го разряда буферные растворы по ГОСТ 8.120-2014;
- стандарт-титры СТ-ОВП-01-1 и СТ-ОВП-01-2 (Рег № 61364-15) (готовятся насыщением хингидроном буферных растворов рН 1,65 и 6,86);
 - термометр лабораторный электронный ЛТ-300 (рег. № 61806-15);
 - установка кондуктометрическая поверочная КПУ-1 (рег. № 31468-06);
 - CO состава искусственной газовой смеси $O_2 + N_2 \Gamma CO$ 10531-2014.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) на анализаторы, как указано на рисунке 2.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к анализаторам жидкости комбинированным M200

ГОСТ 8.457-2015 ГСИ. Государственная поверочная схема для средств измерений удельной электрической проводимости жидкостей.

ГОСТ 8.120-2014 ГСИ. Государственная поверочная схема для средств измерений рН.

ГОСТ 8.652-2016 ГСИ. Государственная поверочная схема для средств измерений массовой концентрации растворенных в воде газов (кислорода, водорода).

Приказ Минприроды России от 29.09.2010 № 425 «Об утверждении Методических указаний по осуществлению органами государственной власти субъектов Российской Федерации переданного полномочия Российской Федерации по осуществлению мер по охране водных объектов или их частей, находящихся в федеральной собственности и расположенных на территориях субъектов Российской Федерации».

Техническая документация изготовителя.

Изготовитель

Корпорация «Mettler-Toledo AG», Швейцария

Завод-изготовитель «Mettler-Toledo Instruments (Shanghai) Co., Ltd.», Китай 589 Gui Ping Road, Cao He Jing 200233 Shanghai, Peoples Republic of China

Тел.: +862164850435; Факс: +862164850435

E-mail: <u>ad@mt.com</u> Web-сайт: www.mt.com

Заявитель

Акционерное общество «Меттлер-Толедо Восток» (АО «Меттлер-Толедо Восток») ИНН 7705125499

Адрес: 101000, г. Москва, Сретенский бульвар, д. 6/1, офис 6

Тел.: +7 (495) 777-7077; Факс: +7 (495) 777-70-77

E-mail: <u>inforus@mt.com</u> Web-сайт: www.mt.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

(ФГУП «ВНИИМ им. Д.И. Менделеева»)

Адрес: 190005, г. Санкт-Петербург, Московский пр. д. 19

Тел.: +7 (812) 251-76-01; Факс: +7 (812) 713-01-14

E-mail: <u>info@vniim.ru</u> Web-сайт: <u>www.vniim.ru</u>

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев

М.п. «____ » _____ 2018 г.