ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части ООО «Транснефть - Дальний Восток» по объекту НПС №29

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части ООО «Транснефть - Дальний Восток» по объекту НПС №29 (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (далее - ИИК), которые включают в себя измерительные трансформаторы тока (далее - ТТ) по ГОСТ 7746-2015, трансформаторы напряжения (далее - ТН) по ГОСТ 1983-2015 и счетчики активной и реактивной электроэнергии (далее - счетчики) по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2 - 4.

2-й уровень - информационно-вычислительный комплекс электроустановки (далее - ИВКЭ) АИИС КУЭ, включающий в себя устройство сбора и передачи данных ЭКОМ-3000 (далее - УСПД), технические средства приема-передачи данных, каналы связи, для обеспечения информационного взаимодействия между уровнями системы.

3-й уровень - информационно-вычислительный комплекс (далее - ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (далее - сервер БД) АИИС КУЭ, сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (далее - АРМ), серверы точного времени ССВ-1Г и программное обеспечение (далее - ПО) ПК «Энергосфера».

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по измерительным цепям поступают на измерительные входы счетчика. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 минут.

Результаты измерений электроэнергии (W, $\kappa B \tau \cdot \Psi$, Q, $\kappa B a p \cdot \Psi$) передаются в целых числах и соотнесены с единым календарным временем.

Цифровой сигнал с выходов счетчиков поступает на вход УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем - третьем уровне системы выполняется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации - участники оптового рынка электрической энергии и мощности через каналы связи.

Данные хранятся в сервере БД. Последующее отображение собранной информации происходит при помощи АРМ. Данные с ИВК передаются на АРМ, установленные в соответствующих службах, по сети Ethernet. Полный перечень информации, получаемой на АРМ, определяется техническими характеристиками многофункциональных счетчиков и уровнем доступа АРМ к базе данных и сервера БД. ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ПАО «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Данные по группам точек поставки в организации-участники ОРЭ и РРЭ, в том числе АО «АТС», АО «СО ЕЭС» и смежным субъектам, передаются с ИВК с учетом агрегации данных по всем АИИС КУЭ ОАО «АК Транснефть» (Рег. № 54083-13) с учетом полученных данных по точкам измерений, входящим в настоящую систему и АИИС КУЭ смежных субъектов в виде хml-файлов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка, в том числе с использованием ЭЦП субъекта рынка.

АИИС КУЭ имеет систему обеспечения единого времени (далее - СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (счетчиков, УСПД и ИВК). Задача синхронизации времени решается использованием службы единого координированного времени UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация часов ИВК АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г, входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети TСР/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление данных на сервере ИВК.

Синхронизация времени в УСПД осуществляется по сигналам единого календарного времени, принимаемым через устройство синхронизации системного времени (далее - УССВ), реализованного на ГЛОНАСС/GPS-приемнике в составе УСПД. Время УСПД периодически сличается со временем ГЛОНАСС/GPS (не реже 1 раза в сутки), синхронизация часов УСПД проводится независимо от величины расхождения времени.

Сличение часов счетчиков с часами УСПД происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 1 с.

В случае неисправности или ремонта УССВ УСПД имеется возможность синхронизации часов УСПД от уровня ИВК ПАО «Транснефть».

Журналы событий счетчиков, УСПД и сервера ИВК отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение ПК «Энергосфера» версии не ниже 7.1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера». Метрологически значимой частью специализированного программного обеспечения АИИС КУЭ является библиотека pso_metr.dll. Данная библиотека выполняет функции синхронизации, математической обработки информации, поступающей от приборов учета, и является неотъемлемой частью АИИС КУЭ.

Таблица 1 - Метрологические значимые модули ПО

таблица т тистрологи неские зна имые модули то			
Идентификационные признаки	Значение		
Итомический имерический под	ПК «Энергосфера»		
Идентификационное наименование ПО	Библиотека pso_metr.dll		
Номер версии (идентификационный номер) ПО	1.1.1.1		
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B		
Алгоритм вычисления цифрового	MD5		
идентификатора ПО	MD3		

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 - 4.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «Высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов и их метрологические характеристики приведены в таблицах 2-4.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

×							
Номер ИК	Наименование точки измерений	TT	ТН	Счётчик	УСПД	Сервер	Вид электро- энергии
1	2	3	4	5	6	7	8
1	ПС 220 кВ НПС-29, ОРУ-220 кВ, КВЛ 220 кВ Нижне-Бурейская ГЭС - НПС-29	ТОГФ-220 Кл. т. 0,2S 1000/1 Рег. № 61432-15	ЗНОГ-220 Кл. т. 0,2 220 000/√3:100/√3 Рег. № 61431-15	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5 Рег. № 36697-12			активная реактивная
2	ПС 220 кВ НПС-29, ОРУ-220 кВ, ВЛ 220 кВ Архара - НПС-29	ТОГФ-220 Кл. т. 0,2S 1000/1 Рег. № 61432-15	3HOГ-220 Кл. т. 0,2 220 000/√3:100/√3 Рег. № 61431-15	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5 Рег. № 36697-12	ЭКОМ-3000 Рег. №	,	активная реактивная
3	ПС 220 кВ НПС-29, ОРУ-220 кВ, Ввод Т1 220 кВ	ТОГФ-220 Кл. т. 0,2S 100/1 Рег. № 46527-11	3HOΓ-220 Кл. т. 0,2 220 000/√3:100/√3 Per. № 61431-15	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5 Рег. № 36697-12			
4	ПС 220 кВ НПС-29, ОРУ-220 кВ, Ввод Т2 220 кВ	ТОГФ-220 Кл. т. 0,2S 100/1 Рег. № 46527-11 Рег. № 61431-15 СЭТ-4ТМ.03М.16 Кл. т. 0,2 220 000/√3:100/√3 Рег. № 61431-15 СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5 Рег. № 36697-12			активная реактивная		

Продолжение таблицы 2

1	2	3	4	5	6	7	8
5	НПС-29 ЗРУ-10кВ, яч. 1, Ввод №1	ТЛК-СТ-10 Кл. т. 0,5S 1500/5 Рег. № 58720-14	3HOЛ.06-10 Кл. т. 0,5 10 000/√3:100/√3 Рег. № 46738-11	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-12	ЭКОМ-3000 Рег. №	HP ProLiant BL460;	активная реактивная
6	НПС-29 ЗРУ-10кВ, яч. 27, Ввод №2	ТЛК-СТ-10 Кл. т. 0,5S 1500/5 Рег. № 58720-14	ЗНОЛ.06-10 Кл. т. 0,5 10 000/√3:100/√3 Рег. № 46738-11	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-12	17049-14	CCB-1Γ Per. № 39485-08	активная реактивная
Пределы допускаемой погрешности компонентов СОЕВ АИИС КУЭ ±5 с							

Таблица 3 - Метрологические характеристики ИК (активная энергия)

•	or a comment of the	Метрологические характеристики ИК						
		Основн	ая погрег	шность,	Погрешность в рабочих			
Номер ИК	Диапазон тока		(± d), %			условиях, (±d), %		
		$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	
		0,9	0,8	0,5	0,9	0,8	0,5	
1	2	3	4	5	6	7	8	
1-4	IH_1 £ I_1 £ $1,2IH_1$	0,6	0,6	0,9	1,0	1,0	1,2	
	$0,2I_{H_1}EI_1 < I_{H_1}$	0,6	0,6	0,9	1,0	1,0	1,2	
(Сч 0,2S;	$0,05I_{H_1}$ £ I_1 < $0,2I_{H_1}$	0,7	0,8	1,2	1,0	1,1	1,4	
TT 0,2S; TH 0,2)	$0,02I_{H_1}$ £ I_1 < $0,05I_{H_1}$	1,2	1,3	2,0	1,4	1,5	2,2	
5-6	IH_1 £ I_1 £ $1,2IH_1$	1,0	1,2	2,2	1,3	1,5	2,3	
	$0,2I_{H_1}$ £ I_1 < I_{H_1}	1,0	1,2	2,2	1,3	1,5	2,3	
(Сч 0,2S;	$0,05I_{H_1}$ £ I_1 < $0,2I_{H_1}$	1,3	1,6	2,9	1,5	1,8	3,0	
TT 0,5S; TH 0,5)	$0,02I_{H_1}$ £ I_1 < $0,05I_{H_1}$	2,3	2,9	5,4	2,5	3,0	5,5	

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

таолица + - метрологические характеритики итк (реактивная энергия)							
		Метрологические характеристики ИК					•
11 1117		Основн	ая погрег	шность,	Погрешность в рабочих		
Номер ИК	Диапазон тока		(±d), %		условиях, (±d), %		
		$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$
		0,9	0,8	0,5	0,9	0,8	0,5
1	2	3	4	5	6	7	8
1-4	IH_1 £ I_1 £ $1,2IH_1$	1,2	1,0	0,8	2,1	2,0	1,9
	$0,2I_{H_1}EI_1 < I_{H_1}$	1,2	1,0	0,8	2,1	2,0	1,9
(Сч 0,5; TT 0,2S;	$0,05I_{H_1}$ £ I_1 < $0,2I_{H_1}$	1,5	1,1	0,9	2,3	2,1	2,0
TH 0,2)	$0,02I_{H_1}$ £ I_1 < $0,05I_{H_1}$	2,5	2,0	1,5	3,1	2,6	2,3
5-6	IH_1 £ I_1 £ $1,2IH_1$	2,6	1,9	1,2	3,1	2,6	2,1
	$0,2I_{H_1}EI_1 < I_{H_1}$	2,6	1,9	1,2	3,1	2,6	2,1
(Сч 0,5; ТТ 0,5Ѕ;	$0,05 I_{H_1} \mathcal{E} I_1 < 0,2 I_{H_1}$	3,5	2,4	1,5	3,9	3,0	2,3
TH 0,5)	$0,02 \text{IH}_1 \text{£I}_1 < 0,05 \text{IH}_1$	6,4	4,4	2,7	6,7	4,8	3,2

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 3. Допускается замена измерительных трансформаторов, счетчиков, УСПД на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном в ООО «Транснефть Дальний Восток» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.
- 4. Погрешность в рабочих условиях указана для температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 0 до плюс 40 °C.

Таблица 5 - Основные технические характеристики АИИС КУЭ

Таблица 5 - Основные технические характеристики АИИС КУЭ	
Наименование характеристики	Значение
Количество измерительных каналов	6
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- tok, % ot I_{hom}	от 100 до 120
- коэффициент мощности	0,9
- температура окружающей среды для TT, °C	от -45 до +40
- температура окружающей среды для ТН, °С	от -60 до +40
- температура окружающей среды для счетчиков, °С	от +21 до +25
- температура окружающей среды для УСПД	от -30 до +50
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- Tok, $\%$ ot I_{hom}	от 2 до 120
- коэффициент мощности cosj (sinj)	от 0,5 $_{\rm инд}$. до 0,8 $_{\rm емк}$
- температура окружающей среды для ТТ, ТН в ОРУ-220кВ °С	от -43 до +33
- температура окружающей среды для ТТ, ТН, в ЗРУ-10кВ °C	от 0 до +40
- температура окружающей среды для счетчиков, °С	от 0 до +40
- температура окружающей среды для УСПД	от 0 до +40
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики:	
- среднее время наработки на отказ, ч, не менее	140000
- среднее время восстановления работоспособности, ч	48
УСПД:	
- среднее время наработки на отказ, ч, не менее	100000
- среднее время восстановления работоспособности, ч	24
COEB:	
- среднее время наработки на отказ, ч, не менее	45000
- среднее время восстановления работоспособности, ч	2
Сервер БД:	
- среднее время наработки на отказ, ч, не менее	264599
- среднее время восстановления работоспособности, ч	0,5
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	446 -
сутки, не менее	113,7
- при отключении питания, лет, не менее	10
УСПД:	
- тридцатиминутный профиль нагрузки в двух направлениях,	4~
сутки, не менее	45
- при отключении питания, лет, не менее	10
Сервер БД:	
- хранение результатов измерений и информации состояний	2.5
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера БД и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика:
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера БД.
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - УСПД:
 - сервера БД.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений приращений электроэнергии на интервалах 30 минут (функция автоматизирована);
 - сбора результатов измерений не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист Формуляра на систему автоматизированную информационноизмерительную коммерческого учёта электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части ООО «Транснефть - Дальний Восток» по объекту НПС №29 типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество
1	2	3
Трансформатор тока	ТОГФ-220	12 шт.
Трансформатор тока	ТЛК-СТ-10	6 шт.
Трансформатор напряжения	3НОГ-220	6 шт.
Трансформатор напряжения	ЗНОЛ.06-10	6 шт.
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.16	4 шт.

Продолжение таблицы 6

1	2	3
Счётчик электрической энергии многофункциональный	CЭT-4TM.03M	2 шт.
Устройство сбора и передачи данных	ЭКОМ-3000	1 шт.
Сервер точного времени	ССВ-1Г	2 шт.
Сервер БД	HP ProLiant BL460	2 шт.
Программное обеспечение	ПК «Энергосфера»	1 шт.
Методика поверки	МП 206.1-018-2018	1 экз.
Паспорт - Формуляр	АСВЭ 167.00.000 ФО	1 экз.
Руководство по эксплуатации	-	1 экз.

Поверка

осуществляется по документу МП 206.1-018-2018 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части ООО «Транснефть - Дальний Восток» по объекту НПС №29. Методика поверки», утвержденному ФГУП «ВНИИМС» 26.01.2018 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков СЭТ-4ТМ.03М по документу ИЛГШ.411152.145 РЭ1 Методика поверки», утвержденному ФБУ «Нижегородский ЦСМ» в 2012 г.;
- ЭКОМ-3000 по документу ПБКМ.421459.007 МП «Устройство сбора и передачи данных «ЭКОМ-3000». Методика поверки», утвержденному ФГУП «ВНИИМС» 20 апреля 2014 г.;
- ССВ-1 Γ по документу «Источники частоты и времени/ серверы точного времени ССВ-1 Γ . Методика поверки.» ЛЖАР.468150.003-08 МП, утвержденным Γ ЦИ СИ «Связь Γ ест» ФГУП ЦНИИС в ноябре 2008 Γ .;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 27008-04;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс $60\,^{\circ}$ С, дискретность $0.1\,^{\circ}$ С; диапазон измерений относительной влажности от 10 до $100\,\%$, дискретность 0.1%.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений количества электрической энергии (мощности) с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ПАО «Транснефть» в части ООО «Транснефть - Дальний Восток» по объекту НПС №29 (АИИС КУЭ ПАО «Транснефть» в части ООО «Транснефть - Дальний Восток» по объекту НПС №29)», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части ООО «Транснефть - Дальний Восток» по объекту НПС №29

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Транснефть - Дальний Восток» (ООО «Транснефть - Дальний Восток»)

ИНН 2724132118

Адрес: 680020, Россия, Хабаровский край, г. Хабаровск, ул. Запарина, д.1

Телефон: 8 (4212) 40-11-01 E-mail: info@dmn.transneft.ru

Заявитель

Общество с ограниченной ответственностью «Автоматизированные системы в энергетике» (ООО «Автоматизированные системы в энергетике»)

ИНН 3329074523

Юридический адрес: 600031, г. Владимир, ул. Юбилейная, д.15

Адрес: 600026, г. Владимир, ул. Тракторная д.7А

Телефон: 8(4922) 60-43-42 E-mail: info@autosysen.ru,

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119631, г. Москва, ул. Озерная, д.46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 E-mail: <u>office@vniims.ru</u> Web-сайт: www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____2018 г.