ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений массы нефтепродуктов по резервной схеме учета на ГПС «Нижнекамск-2»

Назначение средства измерений

Система измерений массы нефтепродуктов по резервной схеме учета на ГПС «Нижнекамск-2» (далее - РСУ) предназначена для автоматических измерений массы и показателей качества нефтепродуктов при учетных операциях между НПЗ ОАО «ТАИФ-НК» и АО «Средне-Волжский Транснефтепродукт» при приёме нефтепродуктов на входе ГПС «Нижнекамск-2».

Описание средства измерений

Измерения массы нефтепродуктов выполняют косвенным методом динамических измерений по результатам измерений в трубопроводе:

- объёма нефтепродуктов с помощью преобразователей расхода, давления и температуры;
- плотности нефтепродуктов с помощью поточных преобразователей плотности, давления и температуры.

РСУ представляет собой единичный экземпляр изделия, спроектированного для конкретного объекта из компонентов импортного и отечественного изготовления. Монтаж и наладка системы осуществлены непосредственно на объекте эксплуатации в соответствии с проектной документацией и эксплутационными документами ее компонентов.

Конструктивно РСУ состоит из блока измерительных линий (БИЛ) и системы сбора и обработки информации (СОИ). Технологическая обвязка и запорная арматура РСУ не допускает неконтролируемые пропуски и утечки нефтепродуктов.

БИЛ состоит из входного и выходного коллекторов, двух рабочих измерительных линий (ИЛ). На каждой ИЛ установлены следующие средства измерений (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений) и технические средства:

Входной и выходной коллекторы включают:

- преобразователь давления измерительный 3051 (регистрационный № 14061-15);
- манометры и термометры для местной индикации давления и температуры.

На каждой ИЛ установлены следующие средства измерений (номер в Федеральном информационном фонде по обеспечению единства измерений):

- счётчик ультразвуковой ALTOSONIC V (мод. ALTOSONIC VM) (регистрационный № 18656-04);
 - преобразователь давления измерительный 3051 (регистрационный № 14061-15);
 - датчик температуры Rosemount 644 (регистрационный № 63889-16);
 - манометры и термометры для местной индикации давления и температуры.

СОИ обеспечивает сбор, обработку и хранение измерительной информации. В состав СОИ входят: комплекс измерительно-вычислительный ТН-01 (регистрационный № 67527-17), осуществляющий сбор измерительной информации и формирование отчетных данных, и автоматизированное рабочее место оператора на базе персонального компьютера с программным комплексом «Proficy HMI SCADA - iFix», оснащенных монитором, клавиатурой, мышкой и печатающим устройством.

РСУ установлена на одной площадке последовательно с системой измерений количества и показателей качества нефтепродуктов № 1242 на ГПС «Нижнекамск-2» в связи, с чем предусмотрена возможность:

- измерения массы нефтепродуктов с применением результатов измерений плотности нефтепродуктов поточным преобразователем плотности, установленным в блоке измерений показателей качества нефтепродуктов системы измерений количества и показателей качества нефтепродуктов № 1242 на ГПС «Нижнекамск-2»;

- измерения температуры и давления нефтепродуктов средствами измерений, установленными в блоке измерений показателей качества нефтепродуктов системы измерений количества и показателей качества нефтепродуктов № 1242 на ГПС «Нижнекамск-2».

Поверку и контроль метрологических характеристик преобразователей расхода проводят с помощью стационарной ТПУ, расположенной на одной площадке с РСУ.

РСУ обеспечивает выполнение следующих функций:

- автоматическое измерение объемного расхода нефтепродуктов (м³/ч);
- автоматическое вычисление объема нефтепродуктов (м³);
- автоматическое вычисление массы нефтепродуктов (т);
- автоматическое измерение температуры (°С), давления (МПа), плотности ($\kappa \Gamma/M^3$) нефтепродуктов;
- поверку и контроль метрологических характеристик счётчиков ультразвуковых по стационарной поверочной установке;
- регистрацию и хранение результатов измерений, формирование интервальных отчётов, протоколов, актов приема-сдачи нефтепродуктов, паспортов качества нефтепродуктов.

При выходе из строя средства измерений допускается замена отказавшего средства измерений на другое, аналогичного типа по техническим и метрологическим характеристикам.

Для исключения возможности несанкционированного вмешательства, которое может влиять на показания средств измерений, входящие в состав РСУ, обеспечена возможность пломбирования в соответствии с МИ 3002-2006, нанесения оттисков клейм или наклеек на эти средства измерений в соответствии с методиками поверки этих средств измерений.

Программное обеспечение

Программное обеспечение (далее - ПО) РСУ разделено на два структурных уровня - верхний и нижний. К нижнему уровню относится ПО комплекса измерительно-вычислительного ТН-01 (далее - ИВК). К метрологически значимой части ПО относится конфигурационный файл ИВК - файл, отражающий характеристики конкретного технологического объекта, на котором применяется ИВК, в том числе выбранные вычислительные алгоритмы, константы и параметры физического процесса.

К ПО верхнего уровня относится программный комплекс «Proficy HMI SCADA - iFix», выполняющий функции передачи данных с нижнего уровня, отображения на станциях оператора функциональных схем и технологических параметров объекта, на котором применяется система, прием и обработка управляющих команд оператора, формирование отчетных документов.

Защита ПО от непреднамеренных и преднамеренных изменений, обеспечение его соответствия утвержденному типу осуществляется наличием ограничения доступа, установкой логинов и паролей разного уровня доступа, ведения доступного только для чтения журнала событий. Доступ к ПО для пользователя закрыт. Конструкция РСУ исключает возможность несанкционированного влияния на ПО системы и измерительную информацию.

Идентификационные данные ПО приведены в таблице 1.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные ПО измерительно-вычислительного комплекса ТН-01

таолица 1 - идентификационные данные по измеритель	
Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	AnalogConverter.app
Номер версии (идентификационный номер) ПО	1.0.0.6
Цифровой идентификатор ПО	90389369
Алгоритм вычисления цифрового идентификатора	CRC32
Идентификационное наименование ПО	SIKNCalc.app
Номер версии (идентификационный номер) ПО	1.0.0.24
Цифровой идентификатор ПО	81827767
Алгоритм вычисления цифрового идентификатора	CRC32
Идентификационное наименование ПО	Sarasota.app
Номер версии (идентификационный номер) ПО	1.0.0.18
Цифровой идентификатор ПО	868ebfd5
Алгоритм вычисления цифрового идентификатора	CRC32
Идентификационное наименование ПО	MI3287.app
Номер версии (идентификационный номер) ПО	1.0.0.37
Цифровой идентификатор ПО	d498a0f8
Алгоритм вычисления цифрового идентификатора	CRC32
Идентификационное наименование ПО	MI3312.app
Номер версии (идентификационный номер) ПО	1.0.0.30
Цифровой идентификатор ПО	fe6d172f
Алгоритм вычисления цифрового идентификатора	CRC32
Идентификационное наименование ПО	PP_78xx.app
Номер версии (идентификационный номер) ПО	1.0.0.20
Цифровой идентификатор ПО	c1085fd3
Алгоритм вычисления цифрового идентификатора	CRC32
Итамич Амианиа и помера по ПО	MI2265 ama
Идентификационное наименование ПО	MI3265.app
Номер версии (идентификационный номер) ПО	1.0.0.30
Цифровой идентификатор ПО	a5d0edc6
Алгоритм вычисления цифрового идентификатора	CRC32
Идентификационное наименование ПО	KMH_PP.app
Номер версии (идентификационный номер) ПО	1.0.0.17
Цифровой идентификатор ПО	eff0d8b4
Алгоритм вычисления цифрового идентификатора	CRC32
Идентификационное наименование ПО	KMH_PP_AREOM.app
Номер версии (идентификационный номер) ПО	1.0.0.28
Цифровой идентификатор ПО	3f55fff6
	CRC32
Алгоритм вычисления цифрового идентификатора	UNU32

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	KMH_PV.app
Номер версии (идентификационный номер) ПО	1.0.0.2
Цифровой идентификатор ПО	82b5bb32
Алгоритм вычисления цифрового идентификатора	CRC32
Идентификационное наименование ПО	KMH_PW.app
Номер версии (идентификационный номер) ПО	1.0.0.2
Цифровой идентификатор ПО	2765bade
Алгоритм вычисления цифрового идентификатора	CRC32

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение
Диапазон объемного расхода, м ³ /ч	от 90 до 870
Пределы допускаемой относительной погрешности измерений массы нефтепродуктов, %	±0,25

Таблица 3 - Технические характеристики

Наименование характеристики	Значение
Измеряемая среда	топливо дизельное
Количество измерительных линий, шт.	2 рабочих
Температура измеряемой среды, °С	от -5 до +40
Давление измеряемой среды в РСУ, МПа	от 0,3 до 2,5
Плотность измеряемой среды при 15 °C, кг/м ³	от 820 до 845
Вязкость кинематическая измеряемой среды при 40 °C, мм ² /с	от 2,0 до 4,5
Параметры электропитания:	
- напряжение переменного тока, В	400±40
	230±23
- частота переменного тока, Гц	50±0,4
Габаритные размеры РСУ, мм, не более	
- высота	4470
- ширина	6600
- длина	16900
Условия эксплуатации:	
- температура окружающей среды, °С	от -40 до +45
- относительная влажность, %	80
- атмосферное давление, кПа	от 96 до 104
Средний срок службы, лет	8
Средняя наработка на отказ, ч	20000
Режим работы РСУ	периодический

Знак утверждения типа

наносится на титульный лист инструкции по эксплуатации РСУ типографским способом.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
Система измерений массы нефтепродуктов по	-	1 шт.
резервной схеме учета на ГПС «Нижнекамск-2»		
Инструкция по эксплуатации РСУ	-	1 экз.
ГСИ. Система измерений массы нефтепродуктов	НА.ГНМЦ.0164-17 МП	1 экз.
по резервной схеме учета на ГПС «Нижнекамск-2».		
Методика поверки		

Поверка

осуществляется по документу НА.ГНМЦ.0164-17 МП «ГСИ. Система измерений массы нефтепродуктов по резервной схеме учета на ГПС «Нижнекамск-2». Методика поверки», утверждённому ОП ГНМЦ АО «Нефтеавтоматика» 12.11.2017 г.

Основные средства поверки:

- установка поверочная трубопоршневая двунаправленная OGSB от 32,0 до 550,0 м³/ч (регистрационный № 62207-15);
- средства поверки в соответствии с документами на поверку средств измерений, входящих в состав системы.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого РСУ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке РСУ.

Сведения о методиках (методах) измерений

изложены в документе МН 812-2017 «ГСИ. Масса нефтепродуктов. Методика измерений системой измерений массы нефтепродуктов по резервной схеме учета на ГПС «Нижнекамск-2», аттестованна ОП ГНМЦ АО «Нефтеавтоматика» (свидетельство об аттестации № RA.RU.310652-095/01-2017 от 12.10.2017 г.).

Нормативные документы, устанавливающие требования к системе измерений массы нефтепродуктов по резервной схеме учета на ГПС «Нижнекамск-2»

ГОСТ Р 8.595-2004 ГСИ. Масса нефти и нефтепродуктов. Общие требования к методикам выполнения измерений

ГОСТ 8.510-2002 ГСИ. Государственная поверочная схема для средств измерений объема и массы жидкости

Изготовитель

Акционерное общество «Нефтеавтоматика» (АО «Нефтеавтоматика»)

ИНН 0278005403.

Адрес: 450005, Республика Башкортостан, г. Уфа, ул. 50-летия Октября, д. 24

Телефон: +7(347) 292-79-10 Факс: +7(347) 292-79-11

E-mail: nefteavtomatika@nefteavtomatika.ru

Web-сайт: www.nefteavtomatika.ru

Испытательный центр

Обособленное подразделение Головной научный испытательный центр Акционерное общество «Нефтеавтоматика» в г.Казань (ОП ГНМЦ АО «Нефтеавтоматика»)

Адрес: 420029, Республика Татарстан, г. Казань, ул. Журналистов, д. 2а

Телефон: (843) 295-30-47 Факс: (843) 295-30-96

E-mail: gnmc@nefteavtomatika.ru

Аттестат аккредитации АО «Нефтеавтоматика» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311366 от 09.10.2015 г.

М.п.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев	

2018 г.