ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть - Верхняя Волга» по объекту НПС «Лобково»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть - Верхняя Волга» по объекту НПС «Лобково» (далее - АИИС КУЭ), предназначена для измерений активной и реактивной электрической энергии и мощности, потребленной за установленные интервалы времени технологическим объектом, сбора, обработки, хранения, формирования отчетных документови передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), трансформаторы напряжения (ТН), счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-3.

2-й уровень - информационно-вычислительный комплекс электроустановки (ИВКЭ) АИИС КУЭ, включающий в себя устройство сбора, передачи данных и синхронизации времени (УСПД) ARIS MT200 со встроенным источником точного времени ГЛОНАСС/GPS и каналообразующую аппаратуру.

3-й уровень - информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (АРМ), серверы синхронизации времени ССВ-1Г (регистрационный номер в Федеральном информационном фонде (рег. №) 39485-08) и программное обеспечение (ПО) ПК «Энергосфера».

Первичные фазные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности без учета коэффициентов трансформации. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы.

На верхнем - третьем уровне системы выполняется обработка измерительной информации, в частности, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации - участники оптового рынка электрической энергии и мощности через каналы связи. ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ПАО «Транснефть».

Данные хранятся в сервере БД. Последующее отображение собранной информации происходит при помощи АРМ. Данные с ИВК передаются на АРМ, установленные в соответствующих службах, по сети Ethernet. Полный перечень информации, получаемой на АРМ, определяется техническими характеристиками многофункциональных счетчиков и уровнем доступа АРМ к базе данных и сервера БД. ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ПАО «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Данные по группам точек поставки в организации-участники ОРЭ и РРЭ, в том числе АО «АТС», АО «СО ЕЭС» и смежным субъектам, передаются в виде хml-файлов формата 80020 в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности с использованием ЭЦП субъекта рынка. Передача результатов измерений, состояния средств и объектов измерений по группам точек поставки производится с сервера ИВК настоящей системы с учетом полученных данных по точкам измерений, входящим в АИИС КУЭ ОАО «АК «Транснефть» (рег. № 54083-13).

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (счетчиков, УСПД и ИВК). Задача синхронизации времени решается использованием службы единого координированного времени UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация часов ИВК АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г, входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети TCP/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление данных на сервере ИВК. Резервный сервер синхронизации ИВК используется при выходе из строя основного сервера.

Синхронизация времени в УСПД осуществляется по сигналам точного времени, принимаемым через устройство синхронизации системного времени (УССВ), реализованного на ГЛОНАСС/GPS-приемнике в составе УСПД. Время УСПД периодически сличается со временем ГЛОНАСС/GPS (не реже 1 раза в сутки), синхронизация часов УСПД проводится независимо от величины расхождения времени.

В случае неисправности, ремонта или поверки УССВ имеется возможность синхронизации часов УСПД от уровня ИВК ПАО «Транснефть».

Сличение часов счетчиков с часами УСПД происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 1 с.

Журналы событий счетчиков, УСПД и сервера ИВК отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера». Метрологически значимая часть содержится в модуле, указанном в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Метрологически значимой частью специализированного программного обеспечения АИИС КУЭ является библиотека pso_metr.dll. Данная библиотека выполняет функции синхронизации, математической обработки информации, поступающей от приборов учета, и является неотъемлемой частью АИИС КУЭ.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение		
Идентификационное наименование	ПК «Энергосфера»		
программного обеспечения	Библиотека pso_metr.dll		
Номер версии (идентификационный номер)	1.1.1.1		
программного обеспечения	1.1.1.1		
Цифровой идентификатор программного			
обеспечения (контрольная сумма	CBEB6F6CA69318BED976E08A2BB7814B		
исполняемого кода)			
Алгоритм вычисления цифрового	MD5		
идентификатора программного обеспечения	WIDS		

Уровень защиты ПО - высокий, в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ, метрологические и технические характеристики АИИС КУЭ приведены в таблице 2-4.

Таблица 2 - Состав ИК АИИС КУЭ

1 4	аолица 2 - Состав ик Анис ку 3							
	_	Состав АИИС КУЭ						
No UK	Диспетчерское наименование присоединения	Вид СИ, Класс точности, коэффициент трансформации, Регистрационный номер в Федеральном информационном фонде (рег №), Обозначение, тип			УСПД	Сервер	Вид энергии	
1	2		3	<u>≅), OC</u>	4	5	6	7
1	ПС 35/10 кВ НПС «Лобково» ОРУ-35 кВ Ввод №1 ТТ-35-1Т	Счетчик ТН ТТ	KT = 0,5S KTT = 200/5 per. № 47959-11 KT = 0,2 KTH = 35000ÖB/100ÖB per. № 60002-15 KT = 0,2S/0,5 per. № 36697-12	A B C A B C	ТОЛ-35 ТОЛ-35 ТОЛ-35 НАМИ-35 НАМИ-35 НАМИ-35 СЭТ-4ТМ.03М	ARIS MT200,	HP ProLiant BL 460c Gen8, HP ProLiant BL 460c G6	Активная Реактивная
2	ПС 35/10 кВ НПС «Лобково» ОРУ-35 кВ Ввод №2 ТТ-35-2Т	Счетчик ТН ТТ	$K_T = 0.5S$ $K_{TT} = 200/5$ per. № 47959-11 $K_T = 0.2$ $K_{TH} = 35000 \Brightarrow 8/100 \Brightarrow 8/0002-15$ $K_T = 0.2S/0.5$ per. № 36697-12	A B C A B C	ТОЛ-35 ТОЛ-35 ТОЛ-35 НАМИ-35 НАМИ-35 НАМИ-35	per. № 53992-13		Активная Реактивная

Таблица 3 - Метрологические характеристики ИК (активная энергия)

Метрологические характеристики ИК (активная энергия)									
Номер ИК	Диапазон значений силы тока	Основная относительная погрешность ИК $(\pm \delta)$, %			Относительная погрешность ИК в рабочих условиях эксплуатации $(\pm \delta)$, %				
		$\cos \varphi = 1,0$	cos φ 0,8		$\cos \varphi = 0.5$	$\cos \varphi = 1,0$	cos 0,		$\cos \varphi = 0.5$
1	2	3	4		5	6	7	1	8
1 - 2	$0.01(0.02)I_{{\scriptscriptstyle H}1} \leq I_1 < 0.05I_{{\scriptscriptstyle H}1}$	1,75	2,80)	5,31	1,84	2,8	37	5,35
(TT 0,5S; TH	$0.05I_{\rm H1} \le I_1 < 0.2I_{\rm H1}$	0,93	1,53	3	2,76	1,10	1,6	55	2,83
0,2; Сч 0,2S/0,5	$0.2I_{\rm H1} \le I_1 < I_{\rm H1}$	0,7	1,06	5	1,90	0,91	1,2	23	2,00
	$I_{\scriptscriptstyle \rm H}{}_1 \leq I_1 \leq 1{,}2I_{\scriptscriptstyle \rm H}{}_1$	0,7	1,06	5	1,90	0,91	1,2	23	2,00
Метрологические характеристики ИК (реактивная энергия)									
Номер ИК	Диапазон значений силы тока	Основная относительная погрешность ИК ($\pm \delta$), %			Относительная погрешность ИК в рабочих условиях эксплуатации $(\pm \delta)$, %			ИК в виях	
	силы тока	$\cos \varphi = 0.8$ $(\sin \varphi = 0.6)$		$\cos \varphi = 0.5$ $(\sin \varphi = 0.87)$		$\cos \varphi = 0.8$ $(\sin \varphi = 0.6)$		(8	$\phi = 0.5$ $\sin \phi = 0.87$
1	2	3 4		5			6		
1 - 2 (TT 0,5S; TH	$\begin{array}{c} 0,\!01(0,\!02)I_{_{\rm H}1} \leq I_1 < \\ 0,\!05I_{_{\rm H}1} \end{array}$	4,35		2,62		4,51			2,89
0,2; Сч				1,66	2,70			2,06	
0,2, C4 0,2S/0,5)	$0.2I_{\rm H1} \le I_1 < I_{\rm H1}$	1,64			1,10	2,02		1,65	
0,25/0,3)	$I_{H1} \le I_1 \le 1, 2I_{H1}$	1,64			1,10	2,02			1,65
Пределы допускаемой погрешности СОЕВ, с ±5									

Примечания

- 1 Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$.
- 2 Погрешность в рабочих условиях указана при температуре окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 12 до плюс 32,5°C.
- 3 Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой).
- 4 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 5 Трансформаторы тока по ГОСТ 7746-2015, трансформаторы напряжения по ГОСТ 1983-2015, счетчик электроэнергии по ГОСТ Р 52323-2005 в части активной электроэнергии и ГОСТ Р 52425-2005 в части реактивной электроэнергии.

Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с такими же метрологическими характеристиками, перечисленными в таблице 2, УСПД на однотипные утвержденных типов. Замена оформляется актом в установленном в АО «Транснефть - Верхняя Волга» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 4.

Таблица 4 - Основные технические характеристики ИК

Таблица 4 - Основные технические характеристики ИК	T
Наименование характеристики	Значение
Количество измерительных каналов	2
Нормальные условия:	
параметры сети:	
- напряжение, $\%$ от $\mathrm{U}_{\scriptscriptstyle \mathrm{HOM}}$	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
- коэффициент мощности cosj	0,8
температура окружающей среды °С:	
- для счетчиков активной энергии:	
ΓΟCT P 52323-2005	от +21 до +25
- для счетчиков реактивной энергии:	
ΓΟCT P 52425-2005	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2(5) до 120
- коэффициент мощности	от 0.5 _{инд} до 0.8 _{емк}
диапазон рабочих температур окружающего воздуха, °С:	
- для TT и TH	от -60 до +35
- для счетчиков	от -40 до +65
- УСПД	от -30 до +50
Надежность применяемых в АИИС КУЭ компонентов:	
счётчики электрической энергии СЭТ-4ТМ.03М:	
- среднее время наработки на отказ, ч	165000
- среднее время восстановления работоспособности, ч	2
УСПД ARIS MT200:	
- среднее время наработки на отказ, ч	88 000
CCB-1Γ:	
- среднее время наработки на отказ, ч	15000
- среднее время восстановления работоспособности, ч	2
HP ProLiant BL 460c Gen8:	
- среднее время наработки на отказ Т, ч	261163
- среднее время восстановления работоспособности, ч	0,5
HP ProLiant BL 460c G6:	
- среднее время наработки на отказ Т, ч	264599
- среднее время восстановления работоспособности tв, ч	0,5
Глубина хранения информации	
счётчики электрической энергии:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сут, не более	113,7
ИВК:	
- результаты измерений, состояние объектов и средств	
измерений, лет, не менее	3,5

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
- в журналах событий счетчика и УСПД фиксируются факты:
 - параметрирования;

- пропадания напряжения;
- коррекция времени.

Защищенность применяемых компонентов:

наличие механической защиты от несанкционированного доступа и пломбирование:

- счетчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- УСПД.

наличие защиты на программном уровне:

- пароль на счетчике;
- пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист формуляра на систему автоматизированную информационноизмерительную коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть - Верхняя Волга» по объекту НПС «Лобково» типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность системы автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть - Верхняя Волга» по объекту НПС «Лобково»

Наименование	Обозначение	Количество, шт./экз.
Трансформатор тока	ТОЛ-35	6
Трансформатор напряжения	НАМИ-35	2
Счётчик электрической энергии трёхфазный многофункциональный	CЭT-4TM.03M	2
УСПД	ARIS MT200	1
Сервер синхронизации времени	ССВ-1Г	2
Сервер с программным обеспечением	ПК «Энергосфера»	1
Методика поверки	МП 206.1-396-2017	1
Формуляр	ИЦЭ 1258РД-17.00.ФО	1

Поверка

осуществляется по документу МП 206.1-396-2017 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть - Верхняя Волга» по объекту НПС «Лобково». Методика поверки», утвержденному ФГУП «ВНИИМС» 25.12.2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2845-2003 «Измерительные трансформаторы напряжения $6/\sqrt{3}...35$ кВ. Методика поверки на месте эксплуатации»;

- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М- в соответствии с документом «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М,СЭТ-4ТМ.02М Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145РЭ1, утвержденному руководителем ФБУ «Нижегородский ЦСМ» 04.05.2012г.;
- ARIS MT200 по документу ПБКМ.424359.005 МП «Контроллеры многофункциональные ARIS MT200. Методика поверки», утвержденному ФГУП «ВНИИМС» 13.05.2013 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы GlobalPositioningSystem (GPS), per. № 27008-04;
 - термогигрометр CENTER (мод.314): рег. № 22129-09.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть - Верхняя Волга» по объекту НПС «Лобково», аттестованной ФБУ «Ивановский ЦСМ» (аттестат об аккредитации № 01.00259-2013 от 24.12.2013 г.).

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть - Верхняя Волга» по объекту НПС «Лобково»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «Транснефть - Верхняя Волга»

(АО «Транснефть-Верхняя Волга»)

ИНН 5260900725

Адрес: 603950, г. Нижний Новгород, переулок Гранитный, дом 4/1 ГСП 1504

Телефон: +7 (831) 438-22-00 Факс: +7 (831) 438-22-05

Заявитель

Общество с ограниченной ответственностью «Инженерный центр «Энергия»

(«Энергия»)

ИНН 3702062476

Адрес: 153022, Ивановская обл., г. Иваново, ул. Богдана Хмельницкого, дом 44, корпус 2, офис 2

Телефон: +7 (4932) 366-300 Факс: +7 (4932) 581-031

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____2018 г.