ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Хлеб Кубани»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Хлеб Кубани» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии.

Описание средства измерений

АИИС КУЭ представляет собой многоуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные каналы (ИИК) АИИС КУЭ состоят из:

Первый уровень - измерительно-информационный комплекс точки измерений (ИИК ТИ), включающий измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

Второй уровень - информационно-вычислительный комплекс (ИВК), включает в себя сервер АИИС КУЭ, устройство синхронизации времени УСВ-3 регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 51644-12 (Рег. № 51644-12), автоматизированные рабочие места (АРМ), а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АИИС КУЭ решает следующие основные задачи:

измерение 30-минутных приращений активной и реактивной электроэнергии;

периодический (один раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);

хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;

передача результатов измерений в организации-участники ОРЭМ:

обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);

диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;

конфигурирование и настройка параметров АИИС КУЭ;

ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ); сбор, хранение и передачу журналов событий счетчиков;

предоставление дистанционного доступа к компонентам АИИС КУЭ (по запросу).

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по измерительным цепям поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. По окончании интервала интегрирования мощности (30 минут) текущие значения мощности добавляются в энергонезависимые регистры массива профиля мощности.

Сервер АИИС КУЭ с периодичностью один раз в сутки по GSM-каналу опрашивает счетчики и считывает с них 30-минутный профиль мощности для каждого канала учета за сутки и журналы событий. Считанные значения записываются в базу данных.

Сервер АИИС КУЭ при помощи программного обеспечения (ПО) осуществляет вычисление значений электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение, оформление справочных и отчетных документов и последующую передачу информации заинтересованным организациям в рамках согласованного регламента.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для обеспечения единства измерений используется шкала координированного времени UTC(SU). В СОЕВ входят часы устройства синхронизации времени, счетчиков, сервера АИИС КУЭ. В качестве устройства синхронизации времени используется УСВ-3, к которому подключен ГЛОНАСС/GPS-приемник. УСВ-3 осуществляет прием сигналов точного времени от ГЛОНАСС/GPS-приемника непрерывно.

Сравнение показаний часов сервера АИИС КУЭ и УСВ-3 происходит с цикличностью один раз в час. Синхронизация часов сервера АИИС КУЭ и УСВ-3 осуществляется независимо от показаний часов сервера АИИС КУЭ и УСВ-3 .

Сравнение показаний часов счетчиков и сервера АИИС КУЭ происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация часов счетчиков и сервера АИИС КУЭ осуществляется при расхождении показаний часов счетчиков и сервера АИИС КУЭ на величину более чем ± 1 с.

Программное обеспечение

Идентификационные данные метрологически значимой части программного обеспечения (ПО) АИИС КУЭ представлены в таблице 1.

Таблица 1 - Идентификационные данные метрологически значимой части ПО АИИС КУЭ

таолица 1 - идентификационные данные метрологически значимой части по жийс ку э				
Идентификационные данные (признаки)	Значение			
1	2			
Наименование ПО	ПО «Пирамида 2000»			
Идентификационное наименование ПО	CalcClients.dll			
Номер версии (идентификационный номер) ПО	3			
Цифровой идентификатор ПО (по MD5)	e55712d0b1b219065d63da949114dae4			
Идентификационное наименование ПО	CalcLeakage.dll			
Номер версии (идентификационный номер) ПО	3			
Цифровой идентификатор ПО (по MD5)	b1959ff70be1eb17c83f7b0f6d4a132f			
Идентификационное наименование ПО	CalcLosses.dll			
Номер версии (идентификационный номер) ПО	3			
Цифровой идентификатор ПО (по MD5)	d79874d10fc2b156a0fdc27e1ca480ac			
Идентификационное наименование ПО	Metrology.dll			
Номер версии (идентификационный номер) ПО	3			
Цифровой идентификатор ПО (по MD5)	52e28d7b608799bb3ccea41b548d2c83			
Идентификационное наименование ПО	ParseBin.dll			
Номер версии (идентификационный номер) ПО	3			
Цифровой идентификатор ПО (по MD5)	56f557f885b737261328cd77805bd1ba7			
Идентификационное наименование ПО	ParseIEC.dll			
Номер версии (идентификационный номер) ПО	3			
Цифровой идентификатор ПО (по MD5)	48e73a9283d1e66494521f63d00b0d9f			
Идентификационное наименование ПО	ParseModbus.dll			
Номер версии (идентификационный номер) ПО	3			
Цифровой идентификатор ПО (по MD5)	c391d64271acf4055bb2a4d3fe1f8f48			

Продолжение таблицы 1

1	2
Идентификационное наименование ПО	ParsePiramida.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО (по MD5)	ecf532935ca1a3fd3215049af1fd979f
Идентификационное наименование ПО	SynchroNSI.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО (по MD5)	530d9b0126f7cdc23ecd814c4eb7ca09
Идентификационное наименование ПО	VerifyTime.dll
Номер версии (идентификационный номер) ПО	3
Цифровой идентификатор ПО (по MD5)	1ea5429b261fb0e2884f5b356a1d1e75

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав ИИК АИИС КУЭ приведен в таблице 2. Метрологические характеристики ИИК АИИС КУЭ приведены в таблице 3.

Таблица 2 - Состав ИИК АИИС КУЭ

	Наименование Состав ИИК					Вид
№ ИИК	ИИК	TT	TH	Счетчик	ИВК	электро- энергии
1	2	3	4	5	6	7
1	ЗТП-66П «Комбикормо- вый завод» 10/0,4 кВ, РУ-10 кВ, 1 с. ш. 10 кВ, яч. 2	ТОЛ-НТЗ-10 кл.т. 0,5S 150/5 Зав. № 63026 Зав. № 64256 Рег. № 51679-12	НАМИТ-10 кл.т. 0,5 10000/100 Зав. № 3899170000001 Рег. № 16687-13	СЭТ-4ТМ.03М кл.т. 0,2S/0,5 Зав. № 0803130050 Рег. № 36697-12		Активная Реактивная
2	ЗТП-66П «Комбикормо- вый завод» 10/0,4 кВ, РУ-10 кВ, 2 с. ш. 10 кВ, яч. 9	ТОЛ-НТ3-10 кл.т. 0,5S 150/5 Зав. № 62729 Зав. № 62730 Рег. № 51679-12	НАМИТ-10 кл.т. 0,5 10000/100 Зав. № 3899170000002 Рег. № 16687-13	СЭТ-4ТМ.03М кл.т. 0,2S/0,5 Зав. № 0803130155 Рег. № 36697-12	KV3 0224 -12)	Активная Реактивная
3	ЗТП-151П «Мельзавод» 10/0,4 кВ, РУ-0,4 кВ, 1 с. ш. 0,4 кВ, Т-1 ввод 0,4 кВ	ТШП-0,66М кл.т. 0,5 1000/5 Зав. № 03035767, 03035768, 03035769 Рег. № 57564-14	-	ПСЧ- 4ТМ.05МК.04 кл.т. 0,5S/1,0 Зав. № 1112174413 Рег. № 64450-16	Cepsep AUUC KYE YCB-3 3as. Nº 0224 (Per. Nº 51644-12)	Активная Реактивная
4	ЗТП-151П «Мельзавод» 10/0,4 кВ, РУ-0,4 кВ, 2 с. ш. 0,4 кВ, Т-2 ввод 0,4 кВ	ТШП-0,66М кл.т. 0,5 1000/5 Зав. № 03035680, 03035681, 03035682 Рег. № 57564-14	-	ПСЧ- 4ТМ.05МК.04 кл.т. 0,5Ѕ/1,0 Зав. № 1112174534 Рег. № 64450-16		Активная Реактивная

Таблица 3 - Метрологические характеристики ИИК АИИС КУ
--

таолица 3 - метрологические характеристики иик Анис Ку 3					
		Пределы допускаемой относительной погрешности ИИК			
		при измерении активной электрической энергии			
Номер ИИК	cosφ	в рабочих условиях применения АИИС КУЭ (d), %			
		$d_{1(2)}$ %,	$d_{5\%},$	$d_{20\%},$	d _{100 %} ,
		$I_{1(2)}$ £ $I_{_{{\rm H3M}}}$ < $I_{_{5}}$ %	I_{5} %£ I_{M3M} < I_{20} %	I_{20} %£ I_{M3M} < I_{100} %	I_{100} %£ $I_{изм}$ £ I_{120} %
	1,0	±1,9	±1,2	±1,0	±1,0
1, 2	0,9	±2,4	±1,5	±1,2	±1,2
TT - 0,5S; TH - 0,5;	0,8	±2,9	$\pm 1,7$	±1,4	±1,4
Счетчик - 0,2S	0,7	±3,6	±2,1	±1,6	±1,6
	0,5	±5,5	±3,0	±2,3	±2,3
	1,0	-	±2,1	±1,5	±1,4
3, 4	0,9	-	±2,5	±1,7	±1,5
TT - 0,5;	0,8	-	±3,1	±1,9	±1,6
Счетчик - 0,5S	0,7	1	±3,7	±2,1	±1,7
	0,5	1	±5,5	±3,0	±2,2
		Пределы допускаемой относительной ИИК			
		при измерении реактивной электрической энергии			
Номер ИИК	sinφ	в рабочих условиях применения АИИС КУЭ (d), %			∂ (d), %
		$d_{1(2)\%}$,	d _{5 %} ,	$d_{20\%},$	d _{100 %} ,
		$I_{2\%}$ £ I_{M3M} < $I_{5\%}$	$I_{5\%}$ £ $I_{_{H3M}}$ < $I_{20\%}$	I_{20} %£ I_{M3M} < I_{100} %	I_{100} %£ $I_{изм}$ £ I_{120} %
1 2	0,44	±6,0	±4,0	±3,0	±3,0
1, 2 TT - 0,5S; TH - 0,5;	0,6	±4,3	±3,1	±2,4	±2,4
Счетчик - 0,5	0,71	±3,6	±2,8	±2,1	±2,1
Счетчик - 0,5	0,87	±3,0	±2,4	±1,9	±1,9
3, 4	0,44	-	$\pm 7,1$	±4,5	±3,9
TT - 0,5;	0,6	-	±5,4	±3,8	±3,4
Счетчик - 1,0	0,71	-	±4,6	±3,5	±3,2
C-101-1/1K - 1,0	0,87	-	±4,0	±3,2	±3,1

Предел абсолютной погрешности синхронизации часов компонентов СОЕВ АИИС КУЭ к шкале координированного времени $UTC(SU) \pm 5$ с.

Примечания:

- 1 Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$.
- 2 Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин).
- 3 В качестве характеристик погрешности ИИК установлены пределы допускаемой относительной погрешности ИИК при доверительной вероятности, равной 0,95.
- 4 Нормальные условия применения компонентов АИИС КУЭ:

напряжение от 0,98. Uном до 1,02. Uном;

сила тока от Іном до 1,2-Іном, соѕј =0,9 инд;

температура окружающей среды: от плюс 15 до плюс 25 °C;

относительная влажность воздуха от 30 до 80 % при 25 °C.

5 Рабочие условия применения компонентов АИИС КУЭ:

напряжение переменного тока питающей сети 0,9· Uном до 1,1· Uном, сила переменного тока от 0,01· Іном до 1,2· Іном для ИИК №№ 1,2; сила переменного тока от 0,05· Іном до 1,2· Іном для ИИК №№ 3,4; относительная влажность воздуха от 75 до 98 % при плюс 25 °C.

температура окружающей среды:

для счетчиков электроэнергии от плюс 5 до плюс 35 °C;

для трансформаторов тока по ГОСТ 7746-2001;

для трансформаторов напряжения по ГОСТ 1983-2001.

- 6 Трансформаторы тока изготовлены по ГОСТ 7746-2001, трансформаторы напряжения изготовлены по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии изготовлены: ИИК №№ 1, 2 по ГОСТ Р 52323-2005; ИИК №№ 3, 4 по ГОСТ 31819.22-2012; в режиме измерения реактивной электроэнергии изготовлены: ИИК №№ 1, 2 по ГОСТ Р 52425-2005; ИИК №№ 3, 4 по ГОСТ 31819.23-2012.
- 7 Допускается замена измерительных трансформаторов, счетчика электроэнергии на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в таблице 2. Замена оформляется актом в установленном на объекте порядке.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

счетчики СЭТ-4ТМ.03М, ПСЧ-4ТМ.05МК - среднее время наработки на отказ не менее 165000 часов;

УСВ-3 - среднее время наработки на отказ не менее 45000 часов.

Среднее время восстановления, при выходе из строя оборудования:

для счетчика Тв ≤ 2 часа;

для сервера Тв ≤ 1 час;

для компьютера АРМ Тв ≤ 1 час;

для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;

панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;

наличие защиты на программном уровне - возможность установки многоуровневых паролей на счетчиках, УСВ, сервере, АРМ;

организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;

защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий:

фактов параметрирования счетчика;

фактов пропадания напряжения;

фактов коррекции времени.

Возможность коррекции времени в:

счетчиках (функция автоматизирована);

сервере (функция автоматизирована).

Глубина хранения информации:

счетчики электроэнергии СЭТ-4ТМ.03М, ПСЧ-4ТМ.05МК - тридцатиминутный профиль нагрузки в двух направлениях - не менее 113 суток; при отключении питания - не менее 10 лет;

ИВК - хранение результатов измерений и информации о состоянии средств измерений - не менее 3,5 лет.

Знак утверждения типа

наносится на титульный лист паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность средства измерений приведена в таблице 4.

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
1	2	3
Трансформатор тока	ТОЛ-НТ3-10	4 шт.
Трансформатор тока	ТШП-0,66М	6 шт.
Трансформатор напряжения	НАМИТ-10	2 шт.
Счетчики электрической энергии многофункциональные	СЭТ-4ТМ.03М	2 шт.
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05МК.04	2 шт.
Преобразователь	Moxa NPort 5410	1 шт.
Устройство синхронизации времени	УСВ-3	1 шт.
Коммуникатор	C-1.02	2 шт.
Терминал GSM модем	IRZ MC52iT	1 шт.
Сервер АИИС КУЭ	HP ProLiant DL60 Gen9	1 шт.
Методика поверки	РТ-МП-5178-500-2018	1 экз.
Паспорт-формуляр	ЭССО.411711.АИИС.337 ПФ	1 экз.

Поверка

осуществляется по документу РТ-МП-5178-500-2018 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Хлеб Кубани». Методика поверки», утвержденному ФБУ «Ростест-Москва» 15.02.2018 г.

Основные средства поверки:

трансформаторов тока - по ГОСТ 8.217-2003;

трансформаторов напряжения - по ГОСТ 8.216-2011;

счетчиков СЭТ-4ТМ.03М - по методике поверки ИЛГШ.411152.145РЭ1, утвержденной ГЦИ СИ ФГУ «Нижегородский ЦСМ» в 2012 г.;

счетчиков ПСЧ-4ТМ.05МК - по методике поверки ИЛГШ.411152.167 РЭ1 согласованной с ФГУ «Нижегородский ЦСМ» в 2011 г.;

УСВ-3 - по методике поверки ВЛСТ 240.00.000 И1, утвержденной ФГУП ВНИИФТРИ в 2012 г.;

радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), регистрационный № 46656-11;

переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-02;

термометр по ГОСТ 28498-90, диапазон измерений от минус 40 до плюс 50 °C, цена деления 1 °C.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде оттиска клейма поверителя и (или) наклейки.

Сведения о методиках (методах) измерений

приведены в документе «Методика (методы) измерений количества электрической энергии с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Хлеб Кубани»». Свидетельство об аттестации методики (методов) измерений № 0003/2018-01.00324-2011от 29.01.2018 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Хлеб Кубани»

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

Изготовитель

Общество с ограниченной ответственностью «ЭнергоСнабСтройПроект»

(ООО «ЭнергоСнабСтройПроект»)

ИНН 3329033950

Адрес: 600021, г. Владимир, ул. Мира, д. 4а, офис № 3

Юридический адрес: 600000 г. Владимир, ул. Большая Московская, д. 22а

Телефон: +7 (4922) 33-81-51, +7 (4922) 34-67-26

Факс: +7 (4922) 42-44-93

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект д. 31

Телефон: +7 (495) 544-00-00, +7 (499) 129-19-11

Факс: +7 (499) 124-99-96 E-mail: info@rostest.ru

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310639 от 16.04.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___ » _____ 2018 г.