ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Урал» по ЛПДС «Исилькуль»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Урал» по ЛПДС «Исилькуль» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее - ТТ, трансформаторы напряжения (далее - ТН) и счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень - информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных СИКОН С70 (далее - УСПД), каналообразующую аппаратуру, устройство синхронизации времени (далее - УСВ) УСВ-2.

3-й уровень - информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (АРМ), серверы синхронизации времени ССВ-1Г, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем - третьем уровне системы выполняется обработка измерительной информации, в частности, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации - участники оптового рынка электрической энергии и мощности через каналы связи.

ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ПАО «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Данные по группам точек поставки в организации-участники ОРЭ и РРЭ, в том числе АО «АТС», АО «СО ЕЭС» и смежным субъектам, передаются с ИВК с учетом агрегации данных по всем АИИС КУЭ ПАО «Транснефть» (Госреестр № 54083-13) с учетом полученных данных по точкам измерений, входящим в настоящую АИИС КУЭ и АИИС КУЭ смежных субъектов в виде хml-файлов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка, в том числе с использованием ЭЦП субъекта рынка.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для обеспечения единства измерений используется единое календарное время. В СОЕВ входят часы счетчиков, УСПД, СБД АИИС КУЭ. В качестве устройства синхронизации времени на уровне ИВК используются два сервера синхронизации времени ССВ-1Г (основной и резервный), входящие в состав центра сбора и обработки данных (далее - ЦСОД) АИИС КУЭ ПАО «Транснефть». ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети TCP/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного ПО сигналам спутниковой навигационной системы ГЛОНАСС/GPS, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление времени на сервере ИВК.

Синхронизация времени в УСПД осуществляется по сигналам единого календарного времени, принимаемым через устройство синхронизации системного времени, реализованного посредствам подключеного к УСПД УСВ-2. Время УСПД периодически сличается со временем ГЛОНАСС/GPS (не реже 1 раза в сутки), синхронизация часов УСПД проводится независимо от величины расхождения времени.

Сличение часов счетчиков с часами УСПД происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 1 с.

В случае неисправности, ремонта или поверки УСВ-2 имеется возможность синхронизации часов УСПД от уровня ИВК ПАО «Транснефть».

Журналы событий счетчиков, УСПД и сервера ИВК отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии не ниже 7.1, в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Метрологически значимой частью специализированного программного обеспечения АИИС КУЭ является библиотека pso_metr.dll. Данная библиотека выполняет функции синхронизации, математической обработки информации, поступающей от приборов учета, и является неотъемлемой частью АИИС КУЭ.

Таблица 1 - Метрологические значимые модули ПО

Tuominga T The position teckne sha immbe modyshi 110					
Идентификационные признаки	Значение				
Идентификационное наименование ПО	ПК «Энергосфера»				
	Библиотека pso_metr.dll				
Номер версии (идентификационный номер) ПО	1.1.1.1				
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B				
Алгоритм вычисления цифрового идентификатора ПО	MD5				

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

~		Измерительные компоненты						Метрологические характеристики ИК	
Номер ИК	Наименование объекта	TT	ТН	Счётчик	УСПД	УСВ	Вид электро- энергии	Основ- ная погреш- ность, %	Погрешность в рабочих условииях, %
1	2	3	4	5	6	7	8	9	10
1	ЛПДС «Исилькуль», КРУН-6кВ, 1 с.ш. 6кВ, яч. 2, Ввод №1	ТЛК Кл. т. 0,5S 400/5 Госреестр № 42683-09	3НОЛ.06 Кл. т. 0,5 6000:√3/100:√3 Госреестр № 3344-08	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Госреестр № 36697-08	СИКОН С70 Госреестр № 28822-05	ССВ-1Г Госрестр № 39485-08 УСВ-2 Госреестр № 41681-09	активная реактивная	±1,1 ±2,7	±3,0 ±4,7
2	ЛПДС «Исилькуль», КРУН-6кВ,2 с.ш. 6кВ, яч. 13, Ввод №2	ТЛК Кл. т. 0,5S 400/5 Госреестр № 42683-09	3HOЛ.06 Кл. т. 0,5 6000:√3/100:√3 Госреестр № 3344-08	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Госреестр № 36697-08	СИКОН С70 Госреестр № 28822-05		активная	±1,1 ±2,7	±3,0 ±4,7
3	ЛПДС «Исилькуль», КРУН-6кВ, Шкаф АВР и СН 0,4кВ	Т-0,66 Кл. т. 0,5S 75/5 Госреестр № 22656-07	-	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5 Госреестр № 36697-08	СИКОН С70 Госреестр № 28822-05		активная	±0,8 ±2,2	±2,9 ±4,6
4	ЛПДС «Исилькуль», РУ-0,4 кВ ЩС-3, 1 секция 0,4 кВ, QF3, Резервный ввод от КТП «5Ю- 40» ТМ-160 10 кВ	ТШ-0,66 Кл. т. 0,5S 300/5 Госреестр № 22657-12	-	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5 Госреестр № 36697-08	СИКОН С70 Госреестр № 28822-05		активная	±0,8 ±2,2	±2,9 ±4,6

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9	10		
5	ЛПДС «Исилькуль», РУ-0,4кВ, ЩС-3, 1 с.ш. 0,4кВ, QF15 (Жил. Поселок)	Т-0,66 Кл. т. 0,5S 100/5 Госреестр № 22656-07	-	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5 Госреестр № 36697-08	СИКОН С70 Госреестр № 28822-05	ССВ-1Г Госрестр № - 39485-08 УСВ-2 Госреестр № 41681-09			активная	±0,8 ±2,2	±2,9 ±4,6
7	ЛПДС «Исилькуль», РУ-0,4кВ, ЩС-4, 0,4кВ, (Омскоблво- доканал)	Т-0,66 Кл. т. 0,5S 100/5 Госреестр № 22656-07	-	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5 Госреестр № 36697-08	СИКОН С70 Госреестр № 28822-05		активная	±0,8 ±2,2	±2,9 ±4,6		
9	ЛПДС «Исилькуль», РУ-0,4кВ, ЩС, 0,4кВ, QF (Узел связи)	Т-0,66 Кл. т. 0,5S 50/5 Госреестр № 22656-07	-	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5 Госреестр № 36697-08	СИКОН С70 Госреестр № 28822-05		активная	±0,8 ±2,2	±2,9 ±4,6		
10	ЛПДС «Исилькуль», ОРУ-35кВ, Ввод 35кВ Т-1	ТВ Кл. т. 0,5S 100/5 Госреестр № 19720-05	НАМИ-35 УХЛ1 Кл. т. 0,2 35000:√3/100:√3 Госреестр № 19813-09	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Госреестр № 36697-12	СИКОН С70 Госреестр № 28822-05		активная	±0,9 ±2,4	±2,9 ±4,6		
11	ЛПДС «Исилькуль», ОРУ-35кВ, Ввод 35кВ Т-2	ТВ Кл. т. 0,5S 100/5 Госреестр № 19720-05	НАМИ-35 УХЛ1 Кл. т. 0,2 35000:√3/100:√3 Госреестр № 19813-09	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Госреестр № 36697-12	СИКОН С70 Госреестр № 28822-05			активная	±0,9 ±2,4	±2,9 ±4,6	
Пре	Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с						<u>+</u>	5			

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд,_I=0.02(0.05)Іном и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1 5, 7, 9 -11 от плюс 5 до плюс 35 °C.

4. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСВ и УСПД на однотипный утвержденного типа. Замена оформляется в установленном на АО «Транснефть-Урал» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 - Основные технические характеристики ИК

1 аолица 3 - Основные технические характеристики ИК — Наимонородие характеристики	Значение		
Наименование характеристики			
V a wywy a central y y a y a y a y y y y y y y y y y y y	2 9		
Количество измерительных каналов	9		
Нормальные условия:			
параметры сети:			
- напряжение, % от U _{ном}	от 99 до 101		
- ток, % от I _{ном}	от 100 до 120		
- частота, Гц	от 49,85 до 50,15		
- коэффициент мощности cosj	0,9		
- температура окружающей среды, °С	от +21 до +25		
Условия эксплуатации:			
параметры сети:			
- напряжение, % от U _{ном}	от 90 до 110		
- tok, $\%$ ot I_{hom}	от 2 до 120		
- коэффициент мощности	от 0,5 $_{\rm инд}$. до 0,8 $_{\rm emk}$.		
- частота, Гц	от 49,6 до 50,4		
- температура окружающей среды для ТТ и ТН, °С	от -45 до +40		
- температура окружающей среды в месте расположения			
электросчетчиков, °С:	от -40 до +60		
- температура окружающей среды в месте расположения			
сервера, °С	от +10 до +30		
- температура окружающей среды в месте расположения			
УСПД, °С	от +5 до +35		
Надежность применяемых в АИИС КУЭ компонентов:			
Электросчетчики:			
- среднее время наработки на отказ, ч, не менее:			
для электросчетчика СЭТ-4ТМ.03М, СЭТ-4ТМ.03М.08	140000		
- среднее время восстановления работоспособности, ч	2		
УСПД:			
- среднее время наработки на отказ не менее, ч			
для УСПД СИКОН С70	70000		
- среднее время восстановления работоспособности, ч	2		
Сервер:			
- среднее время наработки на отказ, ч, не менее	70000		
- среднее время восстановления работоспособности, ч	1		

Продолжение таблицы 3

1	2
1	<i>L</i> .
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	114
- при отключении питания, лет, не менее	40
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление	
за месяц по каждому каналу, суток, не менее	45
- сохранение информации при отключении питания, лет,	
не менее	10
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист Формуляра на систему автоматизированную информационноизмерительную коммерческого учёта электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Урал» по ЛПДС «Исилькуль» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Количество, шт.	
Трансформатор тока	ТЛК	6	
Трансформатор тока	T-0,66	12	
Трансформатор тока	ТШ-0,66	3	
Трансформатор тока	TB	6	
Трансформатор напряжения	3НОЛ.06	6	
Трансформатор напряжения	НАМИ-35 УХЛ1	2	
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	4	
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.08	5	
Устройство сбора и передачи данных	СИКОН С70	1	
Устройства синхронизации времени	УСВ-2	1	
Серверы синхронизации времени	ССВ-1Г	2	
Сервер БД	HP ProLiant BL460	2	
Программное обеспечение	ПК «Энергосфера»	1	
Методика поверки	МП 206.1-067-2018	1	
Формуляр	7305-Ф.АСКУЭ	1	

Поверка

осуществляется по документу МП 206.1-067-2018 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Урал» по ЛПДС «Исилькуль». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 19 марта 2018 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения $35...330/\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» декабря 2007 г.;

- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- УСПД СИКОН С70 по документу «Контроллеры сетевые индустриальный СИКОН С70. Методика поверки ВЛСТ 220.00.000 И1», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2005 г.;
- УСВ-2 по документу ВЛСТ 237.00.001И «Устройство синхронизации времени УСВ-2. Методика поверки», утвержденному ФГУП «ВНИИФТРИ» 12.05.2010 г.;
- ССВ-1 Γ по документу «Источники частоты и времени/ серверы точного времени ССВ-1 Γ . Методика поверки.» ЛЖАР.468150.003-08 МП, утвержденным Γ ЦИ СИ «Связь Γ ест» ФГУП ЦНИИС в ноябре 2008 Γ .;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 27008-04;
- термогигрометр CENTER (мод.311): диапазон измерений температуры от минус 20 до плюс 60° С, дискретность 0.1° С; диапазон измерений относительной влажности от 10 до 100%, дискретность 0.1%.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Урал» по ЛПДС «Исилькуль», аттестованном ООО «Спецэнергопроект», аттестат об аккредитации N RA.RU.312236 от 20.07.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Урал» по ЛПДС «Исилькуль»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «УралЭнергоСервис»

(ООО «УралЭнергоСервис»)

ИНН 0275041202

Юридический адрес: 450022, Республика Башкортостан, г. Уфа, ул. Ст. Злобина, д. 6

Адрес: 450022, Республика Башкортостан, г. Уфа, ул. Ст. Злобина, д. 6

Тел./факс: (347) 248-12-28 /(347) 248-10-04

E-mail: ues@ues-ufa.ru

Заявитель

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Юридический адрес: 111024, г. Москва, ул. Авиамоторная, д. 50, к. 2

Адрес: 111024, г. Москва, ул. Авиамоторная, д. 50, к. 2

Тел./факс: (985) 992-27-81

E-mail: <u>info.spetcenergo@gmail.com</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: (495) 437-55-77 / 437-56-66

E-mail: <u>office@vniims.ru</u> Web-сайт: <u>www.vniims.ru</u>

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2018 г.