ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Интерферометры лазерные ФТИ

Назначение средства измерений

Интерферометры лазерные ФТИ (далее интерферометры) предназначены для измерений отклонений от плоскостности оптических поверхностей.

Описание средства измерений

Измерение отклонений от плоскостности оптических поверхностей основано на анализе деформации формы интерференционных полос возникающих в промежутке между поверхностью контролируемой детали и эталонной поверхностью сравнения в результате интерференции отраженных от них волновых фронтов.

Интерферометр состоит из следующих основных блоков: оптико-механического блока, блока байонетного крепления эталонной пластины и компьютера с программным обеспечением (ПО) для управления интерферометром и анализа интерферограм. Опционально интерферометр может оснащаться блоком фазового сдвига с пъезоприводом.

В качестве источника света в интерферометре может использоваться He-Ne лазер с длиной волны 632 нм или DPSS лазер с длиной волны 532 нм. Оптико-механический блок преобразует лазерное излучение и формирует плоский волновой фронт. Далее волновой фронт с помощью эталонной пластины, закрепленной в байонетном креплении, делится на два. Один волновой фронт - опорный - отражается от поверхности эталонной пластины непосредственно назад в интерферометр. Другой - рабочий волновой фронт - проходит эталон и искажается контролируемой деталью. Он также возвращается в интерферометр и интерферирует с опорным. Анализ получаемой интерференционной картины дает информацию об отклонениях от плоскостности измеряемой оптической поверхности.

Интерферометры в зависимости от диаметра эталонной пластины изготавливают двух модификаций: ФТИ-50 и ФТИ-100 (таблица 2).

Внешний вид интерферометров приведен на рисунке 1.

Пломбирование интерферометров лазерных ФТИ от несанкционированного доступа не предусмотрено.



Рисунок 1 - Внешний вид интерферометров лазерных ФТИ

Программное обеспечение

Интерферометры оснащены программным обеспечением (ПО) DiOpto. Програмное обеспечение позволяет вычислять отклонения формы контролируемой поверхности от эталонной плоскости методами трассирования полос (ТS) или спектральным методом (SM) и при наличии блока фазового сдвига - методом фазового сдвига (PS).

Вычислительные алгоритмы ПО расположены в заранее скомпилированных бинарных файлах и не могут быть модифицированы, они блокируют редактирование для пользователей и не позволяют удалять, создавать новые элементы или редактировать отчеты.

Таблица 1 - Идентификационные данные ПО интерферометров

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	DiOpto
Номер версии (идентификационный номер) ПО	v.3.17 и выше
Цифровой идентификатор ПО	-

Программное обеспечение является неизменным. Средства для программирования или изменения метрологически значимых функций отсутствуют.

Для защиты ПО от несанкционированного доступа используют USB-ключ.

Защита программного обеспечения интерферометров соответствует уровню «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики интерферометров

Модификация	ФТИ-50	ФТИ-100
Диапазон измерений отклонений	от 0,03 до 2,00	от 0,03 до 2,00
от плоскостности, мкм	01 0,03 до 2,00	01 0,03 до 2,00
Пределы допускаемой абсолютной		
погрешности измерений отклонений	±0,025	±0,025
от плоскостности, мкм		
Воспроизводимость измерений, мкм,	0,005	0,005
не более	0,003	0,003

Таблица 3 - Технические характеристики интерферометров

Іодификация ФТИ-50 ФТ		ФТИ-100
Максимальный диаметр измеряемых оптических поверхностей, мм	50	100
Класс лазера по ГОСТ 31581-2012	3A	
Длина волны лазера, нм, не более		
- He-Ne лазер	632	
- DPSS лазер	532	
Мощность, не более, мВт	4	
Допустимое значение частоты возмущающих гармонических		
вибраций, не более, Гц	30	
Параметры электропитания		
Напряжение переменного тока, В	от 200 до 240	
Частота, Гц	от 49	до 51
Масса, кг, не более	1	8
Габаритные размеры, не более, мм		
- длина	270	
- ширина	205	
- высота	50	00
Условия эксплуатации		
- температура окружающей среды, °С	От +18 до +22	
- относительная влажность, %	От 50	до 90

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
Интерферометр лазерный	ФТИ	1 шт.
Блок фазового сдвига с пьезоприводом*		1 шт.
Компьютер с ПО		1 шт.
Технические условия	INT.60826752.001TY	1 экз.
Руководство по эксплуатации	INT.60826752.001PЭ	1 экз.
Методика поверки	МП № 203-65-2017	1 экз.

^{*}поставляется опционально

Поверка

осуществляется по документу МП № 203-65-2017 «Интерферометры лазерные ФТИ. Методика поверки», утвержденному ФГУП «ВНИИМС» 22 сентября 2017 г.

Основное средство поверки: мера отклонений от плоскостности Ø 120 мм, рег. № 48279-11.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационных документах.

Нормативные и технические документы, устанавливающие требования к интерферометрам лазерным ФТИ

INT.60826752.001ТУ Интерферометр лазерный ФТИ. Технические условия

Изготовитель

Закрытое Акционерное общество «Дифракция» (ЗАО «Дифракция»)

ИНН 5408270404

Адрес: 630128, u/ Новосибирск, ул. Кутателадзе, д. 4Г, оф.218

Тел./факс: +7 (383)-332-50-60 E-mail: www.diffraction.ru

Web-сайт: v.n.homutov@gmail.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел.: +7 (495) 437-55-77, факс: +7 (495) 437-56-66

E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа N 30004-13 от 26.07.2013 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

C.C.	Голубев
------	---------

М.п. «___»____2018 г.