ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики электрической энергии трехфазные многотарифные ЛЕ-3

Назначение средства измерений

Счетчики электрической энергии трёхфазные многотарифные ЛЕ-3 (в дальнейшем - счетчики), предназначены для измерений и учета активной или активной и реактивной энергии в трехфазных трех- или четырехпроводных цепях переменного тока. Счетчики позволяют вести учет электрической энергии дифференцированно по зонам суток в соответствии с заданным тарифным расписанием.

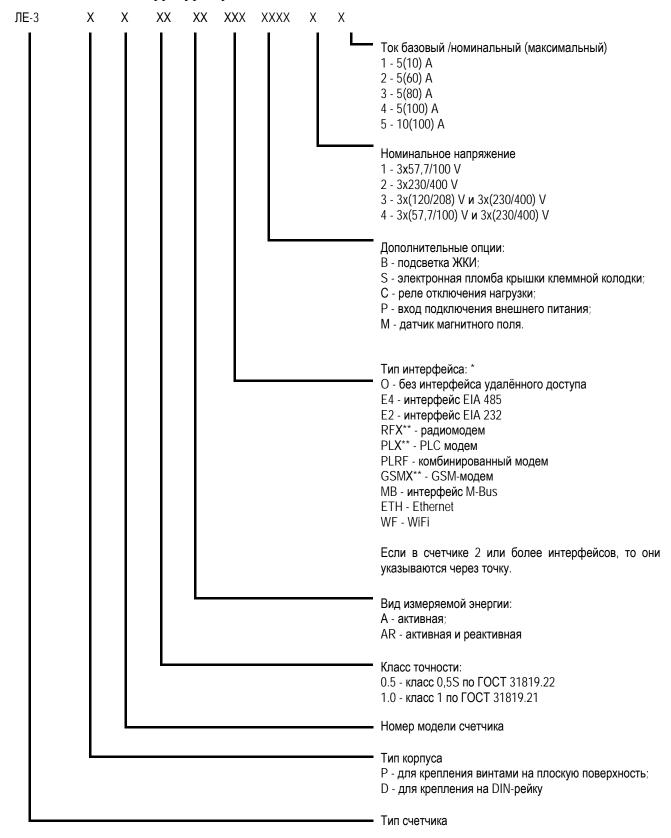
Описание средства измерений

Принцип действия счетчика основан на измерении и математической обработке сигналов тока и напряжения с последующим вычислением параметров потребления электрической энергии и передаче этой информации в счетный механизм.

Счетчики состоят из следующих функциональных узлов:

- датчика тока;
- датчика напряжения;
- блока питания;
- счетного механизма с энергонезависимой памятью и жидкокристаллическим индикатором (ЖКИ) в качестве устройства отображения информации;
- часов реального времени;
- источника резервного питания;
- измерительной схемы;
- интерфейсных схем;
- оптического импульсного выхода;
- испытательного выхода.

Конструктивно счетчики выполнены в виде электронного модуля, корпуса и крышки колодки зажимов. Корпус состоит из цоколя, кожуха и колодки зажимов. Крепление кожуха к цоколю и установка крышки колодки зажимов предусматривает возможность навешивания пломб после поверки.


В качестве датчиков тока в счетчиках трансформаторного подключения используются трансформаторы тока, в счетчиках непосредственного подключения - трансформаторы тока, нечувствительные к постоянной составляющей в сигнале тока или низкоомные шунты. Датчик напряжения представляет собой резистивный делитель. Счётный механизм счётчика электронный, содержит микроконтроллер, память и жидкокристаллический индикатор. В зависимости от модели счетчика измерительная схема реализована на отдельной микросхеме микроконтроллера. Результаты или входит В состав измерения сохраняются энергонезависимой памяти счетчика и отображаются на ЖКИ. При отсутствии внешнего напряжения питание часов осуществляется от резервного источника питания - литиевой батареи.

Счетчики оснащены электронной пломбой крышки клеммной колодки и электронной пломбой корпуса.

Счетчики могут иметь конструктивные варианты исполнения:

- непосредственного или трансформаторного подключения;
- для установки на рейку TH-35 или для крепления винтами на вертикальную поверхность;
- со встроенными реле управления нагрузкой или без реле;
- с проводными и различными беспроводными интерфейсами связи для обмена информацией с внешними устройствами.

Исполнения счетчиков электрической энергии трехфазных многотарифных ЛЕ-3 определяются в соответствии со структурой условного обозначения:

^{*} все счетчики оснащены оптическим портом по ГОСТ IEC 61107

^{**} Х- исполнение модуля.

Отсутствие символа в условном обозначении означает отсутствие соответствующей функции у счетчика.

Общий вид счетчиков и места опломбирования представлены на рисунках 1 - 3.

Схема пломбировки счетчиков от несанкционированного доступа энергоснабжающей организацией и после поверки осуществляется в виде навесных пломб с оттиском клейма поверителя на пломбировочных винтах, как показано на рисунках 1-3.

Рисунок 1 - Общий вид счетчика ЛЕ-3Р и места пломбировки

Рисунок 2 - Общий вид счетчика ЛЕ-3Р и места пломбировки

Рисунок 3 - Общий вид счетчика ЛЕ-3D и места пломбировки

Программное обеспечение

является встроенным (ВПО) и выполняет функции управления режимами работы счетчика, сбора данных об измеренной электрической энергии, их математическую обработку, хранение и передачи измерительной информации ВПО записывается в энергонезависимую память программ микроконтроллера на этапе производства счётчиков. Программное обеспечение логически разделено на метрологически значимую часть программного обеспечения и метрологически незначимую часть. Метрологически значимая часть (МЗЧ) не может быть изменена через внешние порты счётчика. МЗЧ выполняет функции управления режимами работы измерительного аналого-цифрового преобразователя, математической обработки измерительной информации, а также функции загрузки, проверки и активации метрологически незначимой части ВПО. Доступ к МЗЧ возможен только после удаления пломбы поверителя и разборки корпуса.

Метрологически незначимая часть (МНЧ) встроенного программного обеспечения может быть изменена через внешние порты счётчика. МНЧ выполняет функции управления тарифами и выходными устройствами, накопления и представления данных учёта. МНЧ защищена от преднамеренного изменения такими средствами:

- а) обновление МНЧ возможно через внешние порты счётчика только при связи по уровню 2 «Администратор», которая защищена паролем;
 - б) загрузка МНЧ ведётся только шифрованными пакетами;
- в) метрологически значимая часть проверяет контрольную сумму каждой строки МНЧ, а также контрольную сумму в целом, и активирует МНЧ только в том случае, если контрольные суммы сходятся.

Обмен данными с внешними устройствами, в зависимости от исполнения счётчика, осуществляется через интерфейсы:

- оптический порт;
- проводные интерфейсы RS-485, RS-232, M-Bus, Ethernet, PLC;
- беспроводные интерфейсы модемы: GSM, WiFi, RFX или PLRF с помощью программного обеспечения (ПО) «ЛЕ-Конфигуратор», которое предназначено для связи счетчика с ПК.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014.

Влияние программного обеспечения учтено при нормировании метрологических и технических характеристик.

Таблица 1 - Идентификационные данные ВПО счётчиков

таолица т тідентификационные данные віто с іст шков					
Идентификационные		Значение			
данные (признаки)					
Идентификационное	ЛЕ-3Р1	ЛЕ-3Р1	ЛЕ-3Р2	ЛЕ-3Р2	ЛЕ-3Р3
наименование ПО					
Номер версии	1	2	3	4	5
(идентификационный					
номер) ПО					

Идентификационные	Значение				
данные (признаки)					
Идентификационное	ЛЕ-3Р3	ЛЕ-3Р1	ЛЕ-3Р1	ЛЕ-3Р2	ЛЕ-3Р2
наименование ПО					
Номер версии	6	7	8	9	10
(идентификационный					
номер) ПО					

Идентификационные	Значение				
данные (признаки)					
Идентификационное	ЛЕ-3Р3	ЛЕ-3Р3	ЛЕ-3D1	ЛЕ-3D1	ЛЕ-3D2
наименование ПО					
Номер версии	11	12	13	14	15
(идентификационный					
номер) ПО					

Идентификационные данные	Значение		
(признаки)			
Идентификационное наименование	ЛЕ-3D2	ЛЕ-3D3	ЛЕ-3D3
ПО			
Номер версии	16	17	18
(идентификационный номер) ПО			

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Zugugung vanaktanuatuku
паименование характеристики	Значение характеристики
1	2
Класс точности:	
	0,5S (ΓΟCT 31819.22-2012)
	1 (ΓΟCT 31819.21-2012)
	2 (ΓΟCT 31819.23-2012)
Номинальное напряжение (фазное/линейное), В	57,7/100; 120/208; 230/400
Номинальный или базовый ток (максимальный), А	5 (10); 5 (60); 5 (80); 5 (100)
	10 (100)
Номинальная частота сети, Гц	50
Передаточные числа по электрическому испытательному	
выходу и импульсному выходному устройству, имп/кВт ч	от 400 до 300000 *

1	2
Чувствительность (стартовый ток) в % от I _н	
для счетчиков трансформаторного включения:	
- при учете активной и реактивной энергии для класса	
точности 1	$0,002~\mathrm{I}_{\mathrm{Hom}}$
- при учете активной энергии для класса точности 0.5S	$0.001~\mathrm{I_{HOM}}$
- при учете реактивной энергии для класса точности 2	$0,003~\mathrm{I}_{\mathrm{Hom}}$
для счетчиков непосредственного включения:	
- при учете активной и реактивной энергии для класса	
точности 1	$0,004~{ m I}_{ m 6}$
- при учете реактивной энергии для класса точности 2	$0,005 I_{6}$
Пределы допускаемой абсолютной погрешности хода часов,	
с/сутки:	
- при питании от сети напряжения	±0,5
- при питании от автономного источника	±1,0
Нормальные условия применения:	
- температура окружающего воздуха, °С	23 ±2
- относительная влажность воздуха, %	от 30 до 80
- атмосферное давление, кПа	от 86 до 106
* В зависимости от модификации	

Таблица 3 - Основные технические характеристики

Наименование характеристики	Значение характеристики
Количество тарифов	до 8
Полная мощность, потребляемая в каждой цепи тока, В А,	0,1 (для счетчиков
не более	трансформаторного
	включения);
	0,05 для счетчиков
	непосредственного
	включения)
Полная (активная) мощность, потребляемая в каждой цепи	
напряжения счётчика, В А (Вт), не более	2 (1)
При наличии модема полная (активная) мощность, В А (Вт),	
не более	10 (4)
Габаритные размеры счетчиков	
(высота×ширина×глубина),	
- для крепления винтами (рисунок 1), мм, не более	193×279×83,1
- для крепления винтами (рисунок 2), мм, не более	170×227×63,5
- для установки на рейку ТН-35 (рисунок 3), мм, не более	140×118,8×66,1
Масса счетчика:	
- для крепления винтами, кг, не более	1,5
- для установки на рейку ТН-35, кг, не более	0,9
Условия эксплуатации:	
- температура окружающего воздуха, °С	от -40 до +70
- относительная влажность воздуха, %, не более	90 при 30 °C
- атмосферное давление, кПа	84-107
Средняя наработка на отказ, ч	280 000
Средний срок службы, лет	30

Знак утверждения типа

наносится на щиток счётчика офсетной печатью (или другим способом, не ухудшающим качества), на титульный лист руководства по эксплуатации и паспорт типографским способом.

Комплектность средства измерений

Таблица 4 - Комплектность счетчиков электрической энергии трёхфазных многотарифных ЛЕ-3

Наименование	Обозначение	Количество
Счетчики электрической энергии трехфазнь многотарифные ЛЕ-3	ie	1 шт.
Паспорт	ЛЕЭЛ.411152.002 ПС	1 экз.
Руководство по эксплуатации	ЛЕЭЛ.411152.002 РЭ	1 экз.
Методика поверки	ЛЕЭЛ.411152.002 МП	1 экз.

Поверка

осуществляется по документу ЛЕЭЛ.411152.002 МП «Счетчики электрической энергии трёхфазные многотарифные ЛЕ-3. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» 16 февраля 2018 г.

Основные средства поверки:

- установка автоматическая трехфазная для поверки счетчиков электрической энергии HS-6303E, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 44220-10;
- частотомер электронно-счетный Ч3-85/3, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 32359-06.

Допускается применение аналогичных средств поверки, обеспечивающие определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится в виде свинцовых пломб с оттиском клейма поверителя на винты счетчика, как показано на рисунках 1 - 3.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к счетчикам электрической энергии трёхфазным многотарифным ЛЕ-3

ГОСТ 31818.11-2012 Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счётчики электрической энергии

ГОСТ 31819.21-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счётчики активной энергии классов точности 1 и 2

ГОСТ 31819.22-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счётчики активной энергии классов точности 0,2S и 0,5S

ГОСТ 31819.23-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии

ГОСТ 8.551-2013 ГСИ. Государственная поверочная схема для средств измерений электрической мощности и электрической энергии в диапазоне частот от 1 до 2500 Гц

ГОСТ Р 8.767-2011 ГСИ. Государственная поверочная схема для средств измерений силы переменного электрического тока от $1\cdot10^{-8}$ до 100 А в диапазоне частот $1\cdot10^{-1}$ до $1\cdot10^{6}$ Гц

ГОСТ Р 8.648-2015 ГСИ Государственная поверочная схема для средств измерений переменного электрического напряжения до $1000~\rm B$ в диапазоне частот от $1\cdot 10^{-2}$ до $2\cdot 10^9~\rm \Gamma ц$

ТУ ЛЕЭЛ.411152.002 Счетчики электрической энергии трехфазные многотарифные ЛЕ-3.

Изготовитель

Акционерное общество «ЛЕНЭЛЕКТРО» (АО «ЛЕНЭЛЕКТРО»)

ИНН 7810039295

Адрес: 196191, г. Санкт-Петербург, Новоизмайловский проспект, д. 46, корп. 2

Телефон/факс: (812) 374-21-46 Web-сайт: www.lenelectro.com E-mail: info@lenelectro.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., 19

Телефон: (812) 251-76-01, факс: (812) 713-01-14

Web-сайт: www.vniim.ru E-mail: info@vniim.ru

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____»_____2018 г.