ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Стойленский ГОК»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Стойленский ГОК» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее - ТТ), трансформаторы напряжения (далее - ТН) и счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-3.

2-й уровень - информационно-вычислительный комплекс (ИВК) ОАО «Стойленский ГОК», включающий в себя сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), устройство синхронизации времени УСВ-2 (далее - УСВ-2), программное обеспечение (далее - ПО) ПК «Энергосфера», каналообразующую аппаратуру и АРМ субъекта оптового рынка, подключенный к базе данных ИВК ОАО «Стойленский ГОК» при помощи удаленного доступа по сети Internet.

Измерительные каналы (далее - ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на верхний уровень системы, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации.

На верхнем - втором уровне системы выполняется обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Сервер баз данных (БД) АИИС КУЭ ежесуточно формирует и отправляет с помощью электронной почты по выделенному каналу связи по сети Internet по протоколу TCP/IP отчеты в формате XML на APM субъекта оптового рынка. APM субъекта оптового рынка ежесуточно формирует и отправляет с помощью электронной почты по выделенному каналу связи по сети Internet с использованием ЭП по протоколу TCP/IP отчеты в формате XML в АО «АТС», филиал АО «СО ЕЭС» РДУ и всем заинтересованным субъектам ОРЭМ.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ-2, принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов УСВ-2 не более ± 1 с. УСВ-2 обеспечивает автоматическую коррекцию часов сервера баз данных (БД) АИИС КУЭ. Коррекция часов сервера (БД) АИИС КУЭ проводится при расхождении часов сервера БД и времени УСВ-2 более чем на ± 1 с. Коррекция часов счетчиков проводится при расхождении часов счетчика и сервера (БД) АИИС КУЭ более чем на ± 2 с.

Журналы событий счетчика электроэнергии отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств.

Журналы событий сервера (БД) АИИС КУЭ отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии не ниже 8.0, в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 - Метрологические значимые модули ПО

таолица т тистрологи теские эта имые модули	110		
Идентификационные признаки	Значение		
Идентификационное наименование ПО	ПК «Энергосфера»		
	Библиотека pso_metr.dll		
Номер версии (идентификационный номер) ПО	1.1.1.1		
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

\simeq		Измерительные компоненты				Метрологические характеристики ИК	
Наименование объекта Наименование объекта	TT	ТН	Счётчик	Вид электро- энергии	Основная погрешность, %	Погрешность в рабочих условиях,	
1	2	3	4	5	6	7	8
1	ПС 110 кВ Строительная,	ТПШЛ-10 УЗ Кл. т. 0,5	НАМИ-10-95 УХЛ2	СЭТ-4ТМ.03М	активная	±1,1	±3,0
1	РУ-6 кВ, 1 с.ш. 6 кВ, Яч.№5	2000/5	Кл. т. 0,5 6000/100	Кл. т. 0,2S/0,5	реактивная	±2,7	±5,0
2	ПС 110 кВ Строительная,	ТТИ-А Кл. т. 0,5	-	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная	±0,8	±2,9
	ввод 0,22 кВ ТСН-1	50/5			реактивная	±2,2	±4,9
3	ПС 110 кВ Строительная,	ТПШЛ-10 У3 Кл. т. 0,5	НАМИ-10-95 УХЛ2	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная	±1,1	±3,0
3	РУ-6 кВ, 2 с.ш. 6 кВ, Яч.№27	2000/5	Кл. т. 0,5 6000/100		реактивная	±2,7	±5,0
4	ПС 110 кВ Строительная,	ТТИ-А Кл. т. 0,5	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная	±0,8	±2,9
	ввод 0,22 кВ ТСН-2	50/5			реактивная	±2,2	±4,9
5	ПС РП-31 6 кВ, РУ-6 кВ, 1 с.ш. 6 кВ, Яч.31-02, КЛ-6 кВ ТПЛ-10-М УЗ Кл. т. 0,5 100/5			СЭТ-4ТМ.03М	активная	±1,1	±3,0
				Кл. т. 0,2S/0,5	реактивная	±2,7	±5,0

1	жение таолицы 2 2	3	4	5	6	7	8
6	ПС РП-31 6 кВ, РУ-6 кВ, 2 с.ш. 6 кВ, Яч.31-20, КЛ-6 кВ	ТПЛ-10-М УЗ Кл. т. 0,5 100/5	НАМИТ-10-2 УХЛ2 Кл. т. 0,5 6000/100	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная	±1,1 ±2,7	±3,0 ±5,0
7	ПС РП-34 6 кВ, ЗРУ-6 кВ, 1 с.ш. 6 кВ, Яч.34-10, КЛ-6 кВ	ТЛК10 Кл. т. 0,5 100/5	НАМИТ-10-2 УХЛ2 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная	±1,1 ±2,7	±3,0 ±5,0
	ПС DH 24 6 др. 2DV 6 др.	ТЛК10	6000/100 НАМИТ-10-2 УХЛ2	СЭТ-4ТМ.03М	активная	±1,1	±3,0
8	ПС РП-34 6 кВ, ЗРУ-6 кВ, 2 с.ш. 6 кВ, Яч.34-18, КЛ-6 кВ	Кл. т. 0,5 100/5	УДЛ2 Кл. т. 0,5 6000/100	Кл. т. 0,2S/0,5	реактивная	±2,7	±5,0
9	ПС РП-30 6 кВ, ЗРУ-6 кВ, 1 с.ш. 6 кВ, Яч.30-11, КЛ-6 кВ	ТПЛ-10-М УЗ Кл. т. 0,5 150/5	НАМИТ-10-2 УХЛ2 Кл. т. 0,5 6000/100	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная	±1,1 ±2,7	±3,0 ±5,0
10	ПС 330 кВ Губкин, ОРУ 110 кВ, СШ 110 кВ, яч.12, ВЛ 110 кВ Губкин- Стойленский ГОК I цепь	ТВ110-III Кл. т. 0,5 600/5	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0
11	ПС 330 кВ Губкин, ОРУ 110 кВ, СШ 110 кВ, яч.13, ВЛ 110 кВ Губкин- Стойленский ГОК II цепь	ТВ110-III Кл. т. 0,5 600/5	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0
12	ПС 330 кВ Губкин, ОРУ 110 кВ, СШ 110 кВ, ОВМ 110	ТВ110-III Кл. т. 0,5 1000/5	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0

1	<u>2</u>	3	4	5	6	7	8
13	ПС 500 кВ Старый Оскол, ОРУ 110 кВ, СШ 110 кВ, яч.19, ВЛ 110 кВ Старый Оскол-Стойленский ГОК IV цепь	ТФНД-110М II Кл. т. 0,5 1500/1	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0
14	ПС 500 кВ Старый Оскол, ОРУ 110 кВ, СШ 110 кВ, яч.20, ВЛ 110 кВ Старый Оскол-Стойленский ГОК III цепь	ТФНД-110М II Кл. т. 0,5 1500/1	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0
15	ПС 500 кВ Старый Оскол, ОРУ 110 кВ, СШ 110 кВ, яч.21, ВЛ 110 кВ Старый Оскол-Стойленский ГОК II цепь	ТФНД-110М II Кл. т. 0,5 1500/1	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0
16	ПС 500 кВ Старый Оскол, ОРУ 110 кВ, СШ 110 кВ, яч.22, ВЛ 110 кВ Старый Оскол-Стойленский ГОК I цепь	ТФНД-110М II Кл. т. 0,5 1500/1	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная	±1,1 ±2,7	±3,0 ±5,0
17	ПС 500 кВ Старый Оскол, ОРУ 110 кВ, СШ 110 кВ, яч.11, ВЛ 110 кВ Старый Оскол-Ремонтный завод I цепь	ТФНД-110М II Кл. т. 0,5 1500/1	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0

1	2	3	4	5	6	7	8
18	ПС 500 кВ Старый Оскол, ОРУ 110 кВ, СШ 110 кВ, яч.10, ВЛ 110 кВ Старый Оскол-Ремонтный завод II цепь	ТФНД-110М II Кл. т. 0,5 1500/1	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная	±1,1 ±2,7	±3,0 ±5,0
19	ПС 500 кВ Старый Оскол, ОРУ 110 кВ, СШ 110 кВ, ОВМ-1	ТФНД-110М II Кл. т. 0,5 1500/1	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0
20	ПС 500 кВ Старый Оскол, ОРУ 110 кВ, СШ 110 кВ, ОВМ-2	ТФНД-110М II Кл. т. 0,5 1500/1	НКФ-110-57 У1 Кл. т. 0,5 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0
21	ПС 110 кВ Ремзавод-1, ЗРУ-10 кВ, Ввод-1 10 кВ Т-1	ТЛШ-10У3 Кл. т. 0,5 3000/5	ЗНОЛ.06-10УЗ Кл. т. 0,5 10000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0
22	ПС 110 кВ Ремзавод-1, ЗРУ-10 кВ, Ввод-2 10 кВ Т-2	ТЛШ-10У3 Кл. т. 0,5 3000/5	ЗНОЛ.06-10УЗ Кл. т. 0,5 10000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,0
23	ПС РП-34 6 кВ, ЗРУ-6 кВ, 1 с.ш. 6 кВ, Яч.34-09, КЛ-6 кВ	ТЛК10 Кл. т. 0,5 75/5	НАМИТ-10-2 УХЛ2 Кл. т. 0,5 6000/100	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная	±1,1 ±2,7	±3,0 ±5,0
Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с					±	:5	

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.

- 3. Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд, I=0,05Iном и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 23 от минус 20 до плюс 35 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков, УСВ-2 на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Допускается замена сервера и каналообразующего оборудования на аналогичное. Замена оформляется в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 - Основные технические характеристики ИК

Таблица 3 - Основные технические характеристики ИК	
Наименование характеристики	Значение
Количество измерительных каналов	23
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности соѕф	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 5 до 120
- коэффициент мощности	от 0,5 $_{\rm инд}$ до 0,8 $_{\rm емк}$
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °С	от -40 до +60
- температура окружающей среды в месте расположения	
сервера, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчика СЭТ-4ТМ.03М	165000
для электросчетчика СЭТ-4ТМ.03М.08 (Рег. № 36697-17)	220000
для электросчетчика СЭТ-4ТМ.03М.08 (Рег. № 36697-12)	165000
для электросчетчика СЭТ-4ТМ.03М.16	165000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	l
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	114
- при отключении питания, лет, не менее	40
Сервер:	
- хранение результатов измерений и информации состояний	2.5
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «Стойленский ГОК» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег №	Количество, шт.
1	2	3	4
Трансформатор тока	ТПШЛ-10 УЗ	1423-60	4
Трансформатор тока	ТТИ-А	28139-07	6
Трансформатор тока	ТПЛ-10-М У3	22192-03	6
Трансформатор тока	ТЛК10	9143-01	6
Трансформатор тока	TB110-III	19720-00	9
Трансформатор тока	ТФНД-110M II	2793-71	3
Трансформатор тока	ТФНД-110M II	64839-16	21
Трансформатор тока	ТФНД-110М II	70836-18	3
Трансформатор тока	ТЛШ-10У3	11077-07	4

1	2	3	4
Трансформатор напряжения	НАМИ-10-95 УХЛ2	20186-00	2
Трансформатор напряжения	НАМИТ-10-2 УХЛ2	18178-99	3
Трансформатор напряжения	НАМИТ-10-2 УХЛ2	16687-02	2
Трансформатор напряжения	НКФ-110-57 У1	14205-94	18
Трансформатор напряжения	3НОЛ.06-10У3	3344-04	6
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	36697-12	13
Счётчик электрической энергии многофункциональный	CЭT-4TM.03M.08	36697-12	1
Счётчик электрической энергии многофункциональный	CЭT-4TM.03M.08	36697-17	1
Счётчик электрической энергии многофункциональный	CЭT-4TM.03M.16	36697-12	8
Сервер (БД) АИИС КУЭ	HP ProLiant ML350 G5	-	1
Устройство синхронизации времени	УСВ-2	41681-10	1
Программное обеспечение	ПК «Энергосфера»	-	1
Методика поверки	МП 206.1-100-2018	-	1
Паспорт-Формуляр	РЭСС.411711.АИИС.485 ПФ	-	1

Поверка

осуществляется по документу МП 206.1-100-2018 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Стойленский ГОК». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 7 мая 2018 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- счетчиков СЭТ-4ТМ.03М.08 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- счетчиков СЭТ-4ТМ.03М.08 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, утвержденному ФБУ «Нижегородский ЦСМ» «03» апреля 2017 г.;
- счетчиков СЭТ-4ТМ.03М.16 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- УСВ-2 по документу «Устройства синхронизации времени УСВ-2. Методика поверки ВЛСТ 237.00.001И1», утвержденному ФГУП «ВНИИФТРИ» 12 мая 2010 г.;

- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 27008-04;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60° С, дискретность $0,1^{\circ}$ С; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Стойленский ГОК», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Стойленский ГОК»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «РЭС Групп» (АО «РЭС Групп»)

ИНН 3328489050

Адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д. 23, оф. 9

Юридический адрес: 600017, область Владимирская, город Владимир, улица Сакко и Ванцетти, 23

Телефон/факс: 8(4922)22-21-62/ 8(4922)42-31-62 Web-caйт: www.orem.su; E-mail: post@orem.su

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон/факс: 8 (495) 437-55-77 / 8(495) 437-56-66

E-mail: office@vniims.ru; Web-сайт: www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа N 30004-13 от 29.03.2018 г.

Заместитель				
Руководителя Федерального				
агентства по техническому				
регулированию и метрологии				С.С. Голубев
	М.п.	«	>>	2018 г.