ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики ТСК9

Назначение средства измерений

Теплосчетчики ТСК9 (далее - теплосчетчики) предназначены для измерений и регистрации параметров теплоносителя (температуры, давления, расхода), количества (объема, массы) теплоносителя и тепловой энергии в водяных системах теплопотребления, а также температуры окружающего воздуха.

Описание средства измерений

Принцип действия теплосчетчиков основан на преобразовании вычислителем сигналов, поступающих от измерительных преобразователей, в информацию об измеряемых параметрах теплоносителя с последующим вычислением, на основании известных зависимостей, количества тепловой энергии.

Теплосчетчики выпускаются в 15 моделях относятся к комбинированным теплосчетчикам согласно ГОСТ Р ЕН 1434-1-2011 и состоят из следующих компонентов (составных частей) - средств измерений (далее - СИ) утвержденного типа: вычислителя количества теплоты ВКТ-9 (регистрационный номер 56129-14, 67373-17), преобразователей расхода (расходомеров, счетчиков), термопреобразователей сопротивления и их комплектов, преобразователей давления, типы которых приведены в таблице 1.

Таблица 1 - Типы применяемых в составе теплосчетчика средств измерений

,	пы примениемых в составе тенно-	Тип комплектов	Тип
Модель теплосчетчика	Тип преобразователей	термопреобразователей и	преобразователей
	расхода (Регистрационный	термопреобразователей	давления
	номер)	сопротивления	(Регистрационный
		(Регистрационный номер)	номер)
ТСК9-01	ПРЭМ (17858-11)	ACCEPTED 01 ACCEPTED 02	
ТСК9-02	МастерФлоу (31001-12)	КТПТР-01, КТПТР-03,	
ТСК9-03	ВЗЛЕТ ЭР (20293-10)	КТПТР-06, КТПТР-07,	
ТСК9-04	ЭМИР-ПРАМЕР-550	КТПТР-08 (46156-10)	
1CK9-04	(27104-08)	КТПТР-04, КТПТР-05,	
ТСК9-05	Sono 1500 CT (35209-09)	КТПТР-05/1 (39145-08)	СДВ (28313-11)
ТСК9-06	ULTRAHEAT T (51439-12)	КТСП-Н (38878-17)	Метран-150
ТСК9-07	РУС-1 (24105-11)	КТС-Б (43096-15)	(32854-13)
ТСК9-08	Омега-Р (23463-07)	T3M-110 (40593-09)	HT (26817-13)
ТСК9-09	US800 (21142-11)	ТЭМ-100 (40592-09) ТПТ-1,17,19,21,25Р	ПДТВХ-1
ТСК9-10	UFM-3030 (48218-11)	(46155-10)	(43646-10)
ТСК9-11	ВПС (19650-10)	TIIT-7,8,11,12,13,14,15	
ТСК9-12	ВЭПС (14646-05)	(39144-08)	
ТСК9-13	ДРК-4 (29345-05)	ТСП-Н (38959-17)	
ТСК9-14	МЕТРАН-300 ПР (16098-09)	ВЗЛЕТ ТПС (21278-11)	
ТСК9-15	ЭМИС-ВИХРЬ-200 (42775-14)	D331121 1110 (21270 11)	

В составе теплосчетчиков каждой модели могут применяться счетчики объема горячей и холодной воды, формирующие выходной сигнал посредством магнитоуправляемого контакта (геркона): ВСТ, ВСГд (51794-12), ТЭМ (24357-08), ВСГН, ВСТН (55115-13, 61402-15), СКБ (26343-08), ВМХ, ВМГ (18312-03), ЕТ (48241-11), М (48242-11), W (48422-11), ВСКМ 90 (32539-11), СТВУ (32540-11), М-Т150 QN (23553-02), М-Т50 QN (23554-08), WP-Dynamic (15820-07).

Основные функциональные возможности теплосчетчиков:

- измерение тепловой энергии и мощности, массы и объема теплоносителя, объемного и массового расхода теплоносителя, температуры и разности температур теплоносителя, избыточного давления теплоносителя, температуры холодной воды и воздуха;
- отображение текущих, часовых, суточных, месячных и нарастающим итогом показаний на встроенное табло и передача посредством интерфейсов RS232, USB и RS485 (опция по заказу) на внешнее устройство следующих величин: текущее время и дата, время работы и остановки счета количества теплоносителя и тепловой энергии, тепловая энергия и мощность, масса и объем теплоносителя, объемный и массовый расход теплоносителя, температура и разность температур теплоносителя, избыточное давление теплоносителя, температура холодной воды и воздуха.

Параметры электропитания, масса и габаритные размеры составных частей теплосчетчиков соответствуют требованиями их эксплуатационной документации.

Теплосчетчики соответствуют требованиям ГОСТ Р 51649-2014, а также ГОСТ Р ЕН 1434-1-2011 в части требований к метрологическим характеристикам.

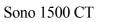
Теплосчетчики соответствуют требованиям TP TC 004/2011 «О безопасности низковольтного оборудования» и TP TC 020-2011 «Электромагнитная совместимость технических средств».

Хранение архивной и итоговой измерительной информации, а также диагностической и настроечной информации осуществляется в энергонезависимой памяти вычислителя.

Архивные показания формируются на часовых, суточных и месячных интервалах. Глубина архива: 1488 часов - часовые, 750 суток - суточные и 48 месяцев - месячные интервалы. Архив действий оператора: 3000 действий. Архив нештатных ситуаций - 5000 записей.

Общий вид составных частей теплосчетчиков приведен на рисунках 1-5.

Рисунок 1 - Вычислитель количества теплоты ВКТ-9


МастерФлоу

ВЗЛЕТ ЭР

ULTRAHEAT T

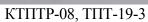
РУС-1

US-800

ВПС

ВЭПС

ДРК-4 МЕТРАН-300 ПР ЭМИС-ВИХРЬ-200 Рисунок 2 - Преобразователи расхода



КТПТР-01, ТПТ-1

КТПТР-06, ТПТ-19-1

КТПТР-07, ТПТ-19-2

КТПТР-04, КТПТР-05, КТПТР-05/1

КТСП-Н, ТСП-Н

КТС-Б

Рисунок 3 - Термопреобразователи сопротивления их комплекты

Рисунок 4 - Преобразователи давления

Рисунок 5 - Счетчики объема горячей и холодной воды, применяемые в составе теплосчетчика

В целях предотвращения несанкционированной настройки и вмешательства в работу теплосчетчика производится пломбирование средств измерений, входящих в состав теплосчетчика. Способы защиты и места пломбирования составных частей теплосчетчиков приведены в их описаниях типа и эксплуатационной документации.

Программное обеспечение

Программное обеспечение (далее - ПО) теплосчетчика представлено ПО средств измерений утвержденного типа входящих в состав теплосчетчика. Уровень защиты ПО, способы защиты и места пломбирования этих средств измерений приведены в их описаниях типа и эксплуатационной документации.

Вычислители количества теплоты имеют встроенное программное обеспечение, в котором выделена метрологически значимая часть.

Метрологически значимая часть ПО, выполняет следующие функции:

- расчет значений расхода и количества измеряемой среды по результатам измерений выходных сигналов преобразователей расхода (счетчиков);
- расчет значений температуры и разности температур по результатам измерений выходных сигналов термопреобразователей сопротивления;
- расчет значений давления по результатам измерений выходных сигналов преобразователей давления;
- вычисление значений плотности, энтальпии и разности энтальпий по результатам измерений температуры, разности температур и давления;
- вычисление значений массового расхода и тепловой мощности по результатам измерений объемного расхода, вычислений плотности и энтальпии;
- вычисление значений массы и тепловой энергии по результатам измерений объема, вычислений плотности, энтальпии и разности энтальпий.

Идентификационные данные встроенного программного обеспечения теплосчётчиков приведены в таблице 2.

Таблица 2 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	BKT-9-01(02)	
Номер версии (идентификационный номер ПО)	v01.XX	
Цифровой идентификатор ПО	1039	
Алгоритм вычисления цифрового идентификатора ПО	CRC-16	
XX - идентификатор метрологически незначимой части ПО, представленный двумя цифрами		
от 0 до 9		

Уровень защиты программного обеспечения и метрологически значимых данных (параметров настройки, архивов результатов измерений) от преднамеренных и непреднамеренных изменений в соответствии с Р 50.2.077-2014 «высокий».

Влияние программного обеспечения учтено при нормировании метрологических характеристик.

Метрологические и технические характеристики

Таблица 3 - Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений тепловой энергии, ГДж	от 0 до 10 ⁷
Диапазон измерений тепловой мощности, ГДж/ч	от 0 до 10 ⁶
Диапазон измерений объема, м ³	от 0 до 10 ⁹
Диапазон измерений массы, т	от 0 до 10 ⁹
Диапазон измерений объемного расхода, M^3/Ψ	от 0,02 до 1,1⋅10 ⁵

Наименование характеристики	Значение
Диапазон измерений массового расхода, т/ч	от 0,02 до 1,1⋅10 ⁵
Диапазон измерений температуры, °С	от 0 до 180 ¹⁾
Диапазон измерений разности температур, °С	от $\Delta t_{\rm h}^{2)}$ до $160^{1)}$
Диапазон измерений избыточного давления, МПа	от 0 до 2,5 ¹⁾
Пределы допускаемой относительной погрешности	$\pm (2+4\Delta t_{H}/\Delta t+0.01G_{max}/G)$
при измерении тепловой мощности и тепловой	(класс 1 по ГОСТ Р 51649-2014,
энергии ³⁾ , %	класс 1 по ГОСТ Р ЕН 1434-1-2011)
	или
	$\pm (3+4\Delta t_{H}/\Delta t+0.02G_{max}/G)$
	(класс 2 по ГОСТ Р 51649-2014,
	класс 2 по ГОСТ Р ЕН 1434-1-2011)
Пределы допускаемой относительной погрешности	$\pm (1 + 0.01 \text{ G}_{\text{max}}/\text{G})$ но не более, чем
при измерении расхода, объема и массы ³⁾ , %	±3,5 % - для класса 1 по
	ГОСТ Р 51649-2014;
	$\pm (2 + 0.02 \text{ G}_{\text{max}}/\text{G})$, но не более, чем
	±5 % - для класса 2 по
	ГОСТ Р 51649-2014
Пределы допускаемой абсолютной погрешности	$\pm (0.4 + 0.005t)$
измерений температуры, °С	
Пределы допускаемой относительной погрешности	$\pm (0.5+3\Delta t_{\scriptscriptstyle H}/\Delta t)$
измерений разности температур, %	
Пределы допускаемой приведенной погрешности	± 1,0
измерений избыточного давления	
(от диапазона измерений), %	
Пределы допускаемой относительной погрешности	± 0,01
измерений интервалов времени, %	

Примечание:

- ¹⁾ Значения верхних пределов диапазона измерений определены соответствующей характеристикой преобразователя, но не превышают указанных значений.
- $^{2)}$ Δt_{H} = 2 °C при применении комплектов КТПТР класс 1, КТСП-Н при $\Delta t_{\text{min}} \leq$ 2 °C, ВЗЛЕТ ТПС класс A;
- $\Delta t_{\text{H}} = 3$ °С при применении комплектов ТЭМ 110, КТС-Б, КТПТР класс 2, КТСП-Н при $\Delta t_{\text{min}} = 3$ °С, ВЗЛЕТ ТПС класс В.
- $^{3)}$ Определяется пределами допускаемых значений относительной погрешности расходомеров Значения количества теплоты (тепловой энергии) и давления могут также представляться в единицах: Гкал и кгс/см 2

Обозначения в таблице:

- t, Δt и Δt_{H} значения температуры, разности температур в подающем и обратном трубопроводе и наименьшее значение разности температур, измеряемые теплосчетчиком, °C.
- G и G_{max} значение измеряемого расхода и его наибольшее значение, M^3/V .

Таблица 4 - Основные технические характеристики

Наименование характеристики	Значение
Рабочие условия применения:	
 температура окружающей среды, °С 	от +5 до +50
 относительная влажность воздуха при 	
температуре окружающей среды 35 °C, %,	93
не более	
– атмосферное давление, кПа	от 84 до 106,7

Наименование характеристики	Значение
Параметры электрического питания	
(при питании от сети):	
 напряжение переменного тока, В 	от 187 до 242
– частота переменного тока, Гц	50±1
Напряжение электрического питания	от 10 до 30
(при питании от внешнего источника), В	01 10 до 30
Средняя наработка на отказ, ч	50000
Средний срок службы, лет	12

Знак утверждения типа

наносится на лицевую панель вычислителя теплосчетчика в виде наклейки и титульный лист эксплуатационной документации типографским способом.

Комплектность средства измерений

Таблица 5 - Комплект поставки теплосчетчика

Tuosingu s Tromisieki noetubkii tensioe iei	IIIKu	
Наименование	Обозначение	Количество
Теплосчетчик	ТСК9	1 шт. ¹⁾
Паспорт	РБЯК.400880.109 ПС	1экз.
Руководство по эксплуатации (раздел 10 «Методика поверки»)	РБЯК.400880.109 РЭ	1экз.
Комплект эксплуатационных документов	-	1экз.
на составные части		
Примечание:		
1) - состав определяется заказом		

осуществляется по документу РБЯК.400880.109 РЭ «Теплосчетчики ТСК9. Руководство по эксплуатации» (раздел 10 «Методика поверки»), утвержденному ФГУП «СНИИМ» «07» ноября 2017 г.

Основные средства поверки: приведены в методиках поверки на средства измерений, входящих в состав теплосчетчиков ТСК9.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к теплосчетчикам ТСК9

ГОСТ Р ЕН 1434-1-2011 Теплосчетчики. Часть 1. Общие требования

ГОСТ Р 51649-2014 Теплосчетчики для водяных систем теплоснабжения. Общие технические условия

ТУ 26.51.52-109-15147476-2017 Теплосчетчики ТСК9. Технические условия

Изготовитель

Общество с ограниченной ответственностью «ИВТ» (ООО «ИВТ»)

ИНН 7802571001

Адрес: 194044, г. Санкт-Петербург, Выборгская наб., дом 45

Тел.: 8 (800) 250-03-03, (812) 600-03-03 Web-сайт: http://www.teplocom-holding.ru

E-mail: info@teplocom-holding.ru

Испытательный центр

ФГУП «Сибирский государственный ордена Трудового Красного знамени научноисследовательский институт метрологии»

Адрес: 630004, г. Новосибирск, пр. Димитрова, 4

Тел. (383) 210-08-14, факс: (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

		С.С. Голубев
М.п.	«	 2018 г.