ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Серовский завод ферросплавов»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Серовский завод ферросплавов» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

Измерительные каналы состоят из двух уровней АИИС КУЭ.

1-й уровень - измерительно-информационный комплекс (ИИК), включающий в себя трансформаторы тока (далее - ТТ), трансформаторы напряжения (далее - ТН) и счетчики активной и реактивной электроэнергии (далее - счётчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-3.

2-й уровень - информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер АИИС КУЭ, устройство синхронизации времени (далее - УСВ) типа УСВ-3, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее - ПО) «АльфаЦЕНТР».

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «ATC», АО «СО ЕЭС».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным и беспроводным каналам связи поступает на верхний уровень системы, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера АИИС КУЭ с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ-3, принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). Контроль времени в часах счетчиков АИИС КУЭ автоматически выполняет ИВК, при каждом сеансе опроса (один раз в 30 минут), корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и ИВК на величину более ±2 с. Корректировка часов ИВК выполняется автоматически, от УСВ-3.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика электроэнергии, отражаются в его журнале событий.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов указанных устройств, отражаются в журнале событий сервера.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР», в состав которого входят модули, указанные в таблице 1. ПО «АльфаЦЕНТР» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «АльфаЦЕНТР».

Таблица 1 - Метрологические значимые модули ПО

Идентификационные признаки	Значение		
Идентификационное наименование ПО	ПО «АльфаЦЕНТР»		
	Библиотека ac_metrology.dll		
Номер версии (идентификационный номер) ПО	Не ниже 15.07.05		
Цифровой идентификатор ПО	3e736b7f380863f44cc8e6f7bd211c54		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

ПО «АльфаЦЕНТР» не влияет на метрологические характеристики измерительных каналов АИИС КУЭ, указанные в таблице 2.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «средний» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

IK		Измерительные компоненты			Метрологические характеристики ИК		
Наименование объекта ТТ		ТН	Счётчик	Вид электроэнергии	Основная погрешность, %	Погрешность в рабочих условиях, %	
1	2	3	4	5	6	7	8
1	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
	ЗРУ-10кВ, яч. №7	1500/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
2	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
	ЗРУ-10кВ, яч. №31	1500/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
3	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
3	ЗРУ-10кВ, яч. №14	1500/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
4	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
4	3РУ-10кВ, яч. №28	1500/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3

1	2 2	3	4	5	6	7	8
5	ПС 110кВ Ферросплав, 3РУ-10кВ, 9С, яч. №47	ТЛШ-10-1 Кл. т. 0,2S 1500/5	НАМИТ-10 Кл. т. 0,5 10000/100	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5	активная реактивная	±0,8 ±1,8	±1,7 ±3,3
6	ПС 110кВ Ферросплав, 3РУ-10кВ, 9С,	ТЛШ-10-1 Кл. т. 0,2S 1500/5	НАМИТ-10 Кл. т. 0,5 10000/100	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5	активная	±0,8 ±1,8	±1,7 ±3,3
7	яч. №49 ПС 110кВ Ферросплав, 3РУ-10кВ,	ТПОЛ-10 Кл. т. 0,2S 1500/5	НАМИТ-10 Кл. т. 0,5 10000/100	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5	активная	±0,8	±1,7
8	яч. №10 ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	реактивная	±1,8 ±0,8	±3,3 ±1,7
	3РУ-10кВ, яч. №23	1500/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
9	ПС 110кВ Ферросплав, 3РУ-10кВ,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5	активная	±0,8	±1,7
	яч. №1	1500/5	10000/100	KJI. 1. U,25/U,3	реактивная	±1,8	±3,3
10	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
	3РУ-10кВ, яч. №24	600/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
11	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
	ЗРУ-10кВ, яч. №32	600/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3

1	2 2	3	4	5	6	7	8
12	ПС 110кВ Ферросплав, 3РУ-10кВ,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5	активная	±0,8	±1,7
	яч. №46	600/5	10000/100		реактивная	±1,8	±3,3
13	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
	3РУ-10кВ, яч. №2	600/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
14	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
	3РУ-10кВ, яч. №41	600/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
15	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
13	ЗРУ-10кВ, 2С, яч. №9	600/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
16	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
10	ЗРУ-10кВ, 4С, яч. №6	600/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
17	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
1 /	ЗРУ-10кВ, 1С, яч. №11	600/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
18	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
18	ЗРУ-10кВ, яч. №37	1000/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3

1	2	3	4	5	6	7	8
19	ПС 110кВ Ферросплав, 3РУ-10кВ,	ТПОЛ-10 Кл. т. 0,2S 1000/5	НАМИТ-10 Кл. т. 0,5 10000/100	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5	активная реактивная	±0,8 ±1,8	±1,7 ±3,3
	яч. №38	1000/3	10000/100		рсактивная	±1,0	±3,3
20	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	± 0.8	±1,7
	3РУ-10кВ, яч. №25	1000/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
21	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
21	ЗРУ-10кВ, яч. №33	1000/5	10000/100	Кл. т. 0,28/0,5	реактивная	±1,8	±3,3
22	ПС 110кВ Ферросплав,	ТПОЛ-10 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
22	3РУ-10кВ, яч. №42	600/5	10000/100	Ι Κπ.Τ.Ο.Σ/Ο.5	реактивная	±1,8	±3,3
23	ПС 110кВ Ферросплав,	ТОЛ-10-I-8 Кл. т. 0,2S	НАМИТ-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
23	3РУ-10кВ, яч. №47«б»	1000/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
24	ПС 110кВ Ферросплав,	TPU 44.33 Кл. т. 0,2S	ТРЈ 4 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
24	КРУН 10 кВ, 11С, яч. №57	1500/5	$10000: \sqrt{3}/100: \sqrt{3}$	Кл. т. 0,28/0,5	реактивная	±1,8	±3,3
25	ПС 110кВ Ферросплав,	TPU 44.33	ТРЈ 4 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
23	КРУН 10 кВ, 10С, яч. №53	Кл. т. 0,2S 1500/5	$10000:\sqrt{3}/100:\sqrt{3}$	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3

1	2	3	4	5	6	7	8
26	ПС 110кВ Ферросплав, КРУН 10 кВ,	ТРU 40.23 Кл. т. 0,2S	ТРЈ 4 Кл. т. 0,5	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5	активная	±0,8	±1,7
	11С, яч. №60	600/5	10000:√3/100:√3	KJI. 1. 0,25/0,5	реактивная	±1,8	±3,3
27	ПС 110кВ Ферросплав,	TPU 40.23	TPJ 4	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
21	КРУН 10 кВ, 10С, яч. №55	Кл. т. 0,2S 600/5	Кл. т. 0,5 10000:√3/100:√3	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
28	ПС 110кВ Теплосеть,	ТОЛ-10-I-8 Кл. т. 0,2S	НАМИ-10У2 Кл. т. 0,2	A1802RL-P4GB-DW-4	активная	±0,6	±1,6
	3РУ-10кВ, 1С, яч. №16	800/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,3	±3,2
29	ПС 110кВ Теплосеть,	ТОЛ-10-I-8 Кл. т. 0,2S	НАМИ-10У2 Кл. т. 0,2	A1802RL-P4GB-DW-4	активная	±0,6	±1,6
29	ЗРУ-10кВ, 2С, яч. №15	800/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,3	±3,2
30	ПС-1 10 кВ, РУ-10 кВ, 1С,	ТПЛ-10-М-1 Кл. т. 0,2S	3х3НОЛ.06-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
30	яч.1	20/5	10000/100	Кл. т. 0,2S/0,5	реактивная	±1,8	±3,3
31	ПС-1 10 кВ, РУ-10 кВ, 2С,	ТПЛ-10-М-1 Кл. т. 0,2S	3х3НОЛ.06-10 Кл. т. 0,5	A1802RL-P4GB-DW-4	активная	±0,8	±1,7
	яч.22	20/5	10000/100	Кл. т. 0,28/0,5	реактивная	±1,8	±3,3
22	ПС-10 10 кВ,	ТОП-0,66		A1802RL-P4GB-DW-4	активная	±0,4	±1,5
32	РП-1 0,4 кВ СШ 0,4 кВ, яч. 2	Кл. т. 0,2S 50/5	-	Кл. т. 0,2S/0,5	реактивная	±1,1	±3,1
	РП-0 0,4кВ,	ТОП-0,66		A1802RL-P4GB-DW-4	активная	±0,4	±1,5
33	СШ-0,4 кВ, яч. №1	Кл. т. 0,2S 75/5	-	Кл. т. 0,2S/0,5	реактивная	±1,1	±3,1

1	2	3	4	5	6	7	8
34	РП-0 0,4кВ, СШ-0,4 кВ,	ТОП-0,66 Кл. т. 0,2S	-	A1802RL-P4GB-DW-4	активная	±0,4	±1,5
	яч. №3	75/5		Кл. т. 0,28/0,5	реактивная	±1,1	±3,1
	РП-0 0,4 кВ,	ТОП-0,66		A1802RL-P4GB-DW-4	активная	±0,4	±1,5
35	СШ-0,4 кВ, яч. №6	Кл. т. 0,2S 50/5	-	Кл. т. 0,2S/0,5	реактивная	±1,1	±3,1
	РП-1 0,4 кВ,	ТОП-0,66		A1802RL-P4GB-DW-4	активная	±0,4	±1,5
36	сборка 0,4 кВ, яч. №5	Кл. т. 0,2S 50/5	-	Кл. т. 0,2S/0,5		±1,1	±3,1
	РП-1 0,4 кВ,	ТОП-0,66		A1802RL-P4GB-DW-4	активная	$\pm 0,4$	±1,5
37	сборка 0,4 кВ, яч. №6	Кл. т. 0,2S 100/5	-	- Kл. т. 0,2S/0,5	реактивная	±1,1	±3,1
	ШВ-0,4кВ	ТОП-0,66		A1802RL-P4GB-DW-4	активная	$\pm 0,4$	±1,5
38	«УКС», яч. №2	Кл. т. 0,2S 50/5	-	Кл. т. 0,2S/0,5	реактивная	±1,1	±3,1
	ШВ-0,4кВ	ТОП-0,66		A1802RL-P4GB-DW-4	активная	$\pm 0,4$	±1,5
39	«УКС», яч. №3	Кл. т. 0,2S 50/5	-	Кл. т. 0,2S/0,5	реактивная	±1,1	±3,1
	ШР-2 0,4кВ,	ТОП-0,66		A1802RL-P4GB-DW-4	активная	±0,4	±1,5
40	яч. №2	Кл. т. 0,2S 50/5	-	Кл. т. 0,28/0,5	реактивная	±1,1	±3,1
	Погрешность часов СОЕВ АИИС КУЭ, с.						±5

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд, I=0.02 $I_{\text{ном}}$, температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 40 от минус 20 до плюс 35 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков и УСВ на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящимописанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 - Основные технические характеристики ИК

1 аолица 3 - Основные технические характеристики ИК	T
Наименование характеристики	Значение
Количество измерительных каналов	40
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2 до 120
- коэффициент мощности	от 0,5 $_{\rm инд}$. до 0,8 $_{\rm емк}$.
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -5 до +40
- температура окружающей среды в месте расположения	
электросчетчиков, °С:	от -40 до +65
- температура окружающей среды в месте расположения	
сервера, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчика A1802RL-P4GB-DW-4	120000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	45
- при отключении питания, лет, не менее	30
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) АО «Серовский завод ферросплавов» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.
1	2	3	4
Трансформатор тока	ТПОЛ-10	47958-16	60
Трансформатор тока	ТЛШ-10-1	64182-16	6
Трансформатор тока	ТОЛ-10-І-8	47959-16	9
Трансформатор тока	TPU 44.33	51368-12	6
Трансформатор тока	TPU 40.23	51368-12	6
Трансформатор тока	ТПЛ-10-М-1	47958-16	4
Трансформатор тока	ТОП-0,66	47959-16	27
Трансформатор напряжения	НАМИТ-10	16687-07	9
Трансформатор напряжения	TJP4	17083-08	6
Трансформатор напряжения	НАМИ-10У2	11094-87	2
Трансформатор напряжения	3х3НОЛ.06-10	46738-11	2
Счётчик электрической энергии многофункциональный	A1802RL-P4GB- DW-4	31857-11	40
Устройство синхронизации времени	УСВ-3	64242-16	1
Программное обеспечение	«АльфаЦЕНТР»	-	1
Методика поверки	МП 013-2018	-	1
Паспорт-Формуляр	001-18.ПФ	-	1

Поверка

осуществляется по документу МП 013-2018 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Серовский завод ферросплавов». Методика поверки», утвержденному ФГУП «ВНИИМС» 18.05.2018 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков A1802RL-P4GB-DW-4 по документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДЯИМ.411152.018 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в 2011 г.:
- УСВ-3 по документу РТ-МП-3124-441-2016 «Устройства синхронизации времени УСВ-2. Методика поверки», утвержденному ФБУ «Ростест-Москва» 23.03.2016 г.
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 46656-11;
- термогигрометр CENTER (мод.315): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%, Рег. № 22129-09;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Серовский завод ферросплавов», аттестованной ООО «Спецэнергопроект», аттестат об аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Серовский завод ферросплавов»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЕЭС-Гарант» (ООО «ЕЭС-Гарант») ИНН 5024104671

Юридический адрес: 143421, Московская область, Красногорский район, 26 км. автодороги «Балтия», комплекс ООО «ВегаЛайн», строение 3

Адрес: 620075, Свердловская область, г. Екатеринбург, ул. Кузнечная, д. 92

Телефон: (495) 980-59-00 Факс: (495) 980-59-08

Заявитель

Общество с ограниченной ответственностью «Стройэнергетика» (ООО «Стройэнергетика»)

Адрес: 129337, г. Москва, ул. Красная Сосна, д. 20, стр. 1, комн. 4

Телефон: (926) 786-90-40

E-mail: Stroyenergetika@gmail.com

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Юридический адрес: 111024, г. Москва, ул. Авиамоторная, д. 50, 2, пом. XIV, комн.11

Адрес: 119119, г. Москва, Ленинский пр. д.42, корп.6, этаж 2, ком. 12.

Телефон: (495) 410-28-81

E-mail: gd.spetcenergo@gmail.com

Аттестат аккредитации ООО «Спецэнергопроект» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312426 от 30.01.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2018 г.