ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Солар Системс» (Самарская солнечная электростанция №2 (75 МВт))

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Солар Системс» (Самарская солнечная электростанция №2 (75 МВт)) (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ решает следующие задачи:

- автоматические измерения 30-минутных приращений активной и реактивной электроэнергии, средне интервальной мощности;
- периодический (1 раз в полчаса, час, сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени состояния средств измерений и результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин.);
- автоматическое сохранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и хранящихся в АИИС КУЭ данных от несанкционированного доступа на физическом и программном уровнях (установка пломб, паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - автоматическое ведение системы единого времени в АИИС КУЭ (коррекция времени). АИИС КУЭ включает в себя следующие уровни:
- 1-й уровень измерительно-информационные комплексы (ИИК), которые включают в себя измерительные трансформаторы тока (далее ТТ), измерительные трансформаторы напряжения (далее ТН), счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-3.
- 2-й уровень измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных ЭКОМ-3000 (далее УСПД), устройство синхронизации времени (далее УСВ), входящее в УСПД, каналообразующую аппаратуру и технические средства обеспечения электропитания.
- 3-й уровень информационно-вычислительный комплекс (ИВК) ООО «Солар Системс» (Самарская солнечная электростанция №2 (75 МВт)), включающий в себя технические средства приема-передачи данных (каналообразующую аппаратуру), коммуникационное оборудование, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), программное обеспечение (далее ПО) ПК «Энергосфера» и технические средства обеспечения электропитания.

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО «СО ЕЭС», другие смежные субъекты ОРЭ.

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.
- средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных по проводной линии связи на верхний уровень системы (сервер АИИС КУЭ), а также отображение информации по подключенным к УСПД устройствам.

На верхнем – третьем уровне системы выполняется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов. ИВК обеспечивает автоматизированный сбор и долгосрочное хранение результатов измерений, информации о состоянии средств измерений, расчет потерь электроэнергии от точки измерения до точки поставки, вычисление дополнительных параметров, подготовку справочных и отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по каналу связи через сеть Интернет по протоколу TCP/IP в соответствии с Приложением 11.1.1. «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), которая включает в себя УСВ на GPS-приемнике, входящее в состав УСПД, встроенные часы сервера АИИС КУЭ, УСПД и счетчиков. Время часов УСПД сихронизировано с сигналами точного времени от GPS-приемника. Сравнение времени сервера с временем УСПД осуществляется при каждом опросе и коррекция времени выполняется при расхождении времени сервера и часов УСПД более, чем на ± 2 с. При каждом сеансе связи происходит сравнение времени УСПД «ЭКОМ-3000» с временем счетчиков. Коррекция времени счетчиков происходит при расхождении с временем УСПД «ЭКОМ-3000» более, чем на ± 2 с.

Журналы событий счетчика электроэнергии отражают: время (дата, часы, минуты, секунды) коррекции часов (время до коррекции и время после коррекции).

Журналы событий сервера БД и УСПД отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии не ниже 8.0, в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче из УСПД ИВКЭ в ИВК по интерфейсу Ethernet является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Идентификационные данные программного обеспечения

Two man in the man in the part	
Идентификационные признаки	Значение
Идентификационное наименование ПО	ПК «Энергосфера»
	Библиотека pso_metr.dll
Номер версии (идентификационный номер) ПО	1.1.1.1
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B
Алгоритм вычисления цифрового идентификатора ПО	MD5

ПО ПК «Энергосфера» не влияет на метрологические характеристики, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

1K	•		Измерительные компоненты Вид		ТН Счётчик УСПД/ Сервер 4 5 6 IOГ-110 п. т. 0,2 0:√3/100:√3 СЭТ-4ТМ.03М Кл. т. 0,2S/0,5		Метрологические характеристики ИК	
Номер ИК	Наименование объекта	TT	ТН	Счётчик		электро- энергии	Основная погрешность,	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ОРУ-110 кВ, ввод Т-1 110 кВ	ТОГФ-110 Кл. т. 0,2S 500/5	ЗНОГ-110 Кл. т. 0,2 110000:√3/100:√3		ЭКОМ- 3000 / HP Proliant DL380Gen9 E5-2620v4	активная	±0,6 ±1,3	±1,5 ±2,6
2	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ОРУ-110 кВ, ввод Т-2 110 кВ	ТОГФ-110 Кл. т. 0,2S 500/5	ЗНОГ-110 Кл. т. 0,2 110000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5		активная реактивная	±0,6 ±1,3	±1,5 ±2,6
3	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 1 с 10 кВ, яч.104	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0		активная реактивная	±1,0 ±2,6	±3,4 ±5,7

Продолжение таблицы 2

1	Т —	-					1	
4	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 1 с 10 кВ, яч.105	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0	ЭКОМ- 3000 / HP Proliant DL380Gen9 E5-2620v4	активная	±1,0 ±2,6	±3,4 ±5,7
5	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 1 с 10 кВ, яч.106	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0		активная реактивная	±1,0 ±2,6	±3,4 ±5,7
6	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 2 с 10 кВ, яч.203	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0		активная реактивная	±1,0 ±2,6	±3,4 ±5,7
7	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 2 с 10 кВ, яч.204	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0		активная реактивная	±1,0 ±2,6	±3,4 ±5,7

Продолжение таблицы 2

	Ollikeline raolingbi 2	T				ı	1	
8	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 2 с 10 кВ, яч.205	ТОЛ-НТ3-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0	ЭКОМ- 3000 / HP Proliant DL380Gen9 E5-2620v4	активная реактивная	±1,0 ±2,6	±3,4 ±5,7
9	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 3 с 10 кВ, яч.303	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0		активная реактивная	±1,0 ±2,6	±3,4 ±5,7
10	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 3 с 10 кВ, яч.304	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0		активная реактивная	±1,0 ±2,6	±3,4 ±5,7
11	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 3 с 10 кВ, яч.305	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0		активная реактивная	±1,0 ±2,6	±3,4 ±5,7

Продолжение таблицы 2

12	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 4 с 10 кВ, яч.402	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0		активная реактивная	±1,0 ±2,6	±3,4 ±5,7
13	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 4 с 10 кВ, яч.403	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0	ЭКОМ- 3000 / HP Proliant DL380Gen9 E5-2620v4	активная реактивная	±1,0 ±2,6	±3,4 ±5,7
14	Повышающая подстанция ПС 10/10/110кВ Самарская солнечная электростанция №2 (75 МВт), ЗРУ-10 кВ, 4 с 10 кВ, яч.404	ТОЛ-НТЗ-10-11 Кл. т. 0,5S 600/5	ЗНОЛП-НТЗ-10 Кл. т. 0,2 10000:√3/100:√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0		активная реактивная	±1,0 ±2,6	±3,4 ±5,7
Преде	Пределы допускаемой погрешности СОЕВ, с						<u>+</u>	-5

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos \mathbf{j} = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 14 от 0 до плюс 40 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа. Замена оформляется в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

1 аблица 3 – Основные технические характеристики ИК	
Наименование характеристики	Значение
Количество измерительных каналов	14
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- tok, % ot I_{hom}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2 до 120
- коэффициент мощности	от 0,5 инд. до 0,8
- частота, Гц	емк•
- температура окружающей среды для ТТ и ТН, °С	от 49,6 до 50,4
- температура окружающей среды в месте расположения	от -40 до +70
электросчетчиков, °С:	от -40 до +65
- температура окружающей среды в месте расположения сервера и	
УСПД, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	165000
- среднее время восстановления работоспособности, ч	2
УСПД:	
- среднее время наработки на отказ не менее, ч	100000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	114
сутки, не менее	40
- при отключении питания, лет, не менее	
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление за месяц	45
по каждому каналу, суток, не менее	
- сохранение информации при отключении питания, лет, не менее	10
Сервер:	
- хранение результатов измерений и информации состояний средств	
измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «Солар Системс» (Самарская солнечная электростанция $N \ge 2$ (75 MBT)) типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Тип	Per №	Количество, шт.
Трансформатор тока	ТОГФ-110	61432-15	6
Трансформатор тока	ТОЛ-НТЗ-10-11	51679-12	36
Трансформатор напряжения	3НОГ-110	61431-15	6
Трансформатор напряжения	ЗНОЛП-НТЗ-10	51676-12	12
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	36697-17	2
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.01	36697-17	12
Устройство сбора и передачи данных со встроенным УСВ	ЭКОМ-3000	17049-14	1
Сервер	HP Proliant DL380 Gen9 E5-52620v4	-	1
Программное обеспечение	ПК «Энергосфера»	-	1
Методика поверки	МП 206.1-118-2018	-	1
Паспорт-Формуляр	РЭСС.411711.АИИС.548 ПФ	-	1

Поверка

осуществляется по документу МП 206.1-118-2018 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Солар Системс» (Самарская солнечная электростанция №2 (75 МВт)). Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 05 июня 2018 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М, СЭТ-4ТМ.03М.01 по документу ИЛГШ.411152.145 РЭ1 «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки», утвержденному ФБУ «Нижегородский ЦСМ» «03» апреля 2017 г.;
- УСПД ЭКОМ-3000 по документу ПБКМ.421459.007 МП «Устройства сбора и передачи данных «ЭКОМ-3000». Методика поверки», согласованному с ФГУП «ВНИИМС» 20 апреля 2014 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 27008-04;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60° С, дискретность 0.1° С; диапазон измерений относительной влажности от 10 до 100%, дискретность 0.1%;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0.01 до 19.99 мТл.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

«Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Солар Системс» (Самарская солнечная электростанция №2 (75 МВт)), аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Солар Системс» (Самарская солнечная электростанция №2 (75 МВт))

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания;

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «Прософт-Системы» (ООО «Прософт-Системы»)

ИНН 6660149600

Адрес: 620102, г. Екатеринбург, ул. Волгоградская, 194а Телефон: +7 (343) 356-51-11, факс: +7 (343) 310-01-06

E-mail: info@prosoftsystems.ru

Заявитель

Акционерное общество «РЭС Групп» (АО «РЭС Групп»)

ИНН 3328489050

Юридический адрес: 600017, обл. Владимирская, г. Владимир, ул. Сакко и Ванцетти, д. 23

Адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д. 23, оф. 9

Телефон: +7 (4922) 22-21-62, факс: +7 (4922) 42-31-62

E-mail: post@orem.su

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский

научно-исследовательский институт метрологической службы»

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 665-30-87, факс: +7 (495) 437-56-66

E-mail: <u>office@vniims.ru</u> Web-сайт: <u>www.vniims.ru</u>

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___ » ____ 2018 г.