ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Бурятзолото»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Бурятзолото» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, отображения и передачи полученной информации. Выходные данные системы могут быть использованы для коммерческих расчетов.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (далее – ИИК), которые включают в себя трансформаторы тока (далее – ТТ), трансформаторы напряжения (далее – ТН) и счетчики активной и реактивной электроэнергии (далее – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-3.

2-й уровень – информационно-вычислительный комплекс (далее – ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (далее – БД) АИИС КУЭ, автоматизированные рабочие места персонала (APM), эталонный источник системного времени тайм-сервера Φ ГУП «ВНИИ Φ ТРИ» первого уровня Stratum 1 (далее – тайм-сервер) и программное обеспечение (далее – ПО) ПК «Энергосфера».

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «ATC», АО «СО ЕЭС».

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- измерение активной и реактивной электроэнергии нарастающим итогом;
- периодический (1 раз в 30 минут) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 минут);
- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени показаний счетчиков электрической энергии;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений в организации-участники оптового и розничного рынков электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.):
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурировние и настройка парамеров АИИС КУЭ;
 - ведение системы единого времени в АИИС КУЭ (коррекция времени);
- формирование и хранение данных о состоянии средств измерений («Журналы событий»);
 - передача журналов событий счетчиков.

Измерительные каналы (далее – ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков с помощью проводных линий связи поступает на сервер опроса, с которого информация передается на сервер БД. На сервере БД осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача, оформление отчетных документов. Передача информации от сервера БД в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта оптового рынкаэлектроэнергии (ОРЭ), в филиал АО «СО ЕЭС» и другим смежным субъектам ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов форматов 80020, 80030 и 80040 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности. Предоставление дистанционного доступа к АИИС КУЭ для контроля со стороны организаций-участников ОРЭМ осуществляется с помощью стандартных средств операционной системы при помощи интернет-соединения удаленным рабочим столом сервера БЛ или АРМ ИВК АИИС КУЭ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя тайм-сервер ФГУП «ВНИИФТРИ». Тайм-сервер (ntp1.vniiftri.ru ntp2.vniiftri.ru) работает от сигналов рабочей шкалы Государственного эталона времени и частоты (ГСВЧ) Российской Федерации (РФ). В соответствии с международным документом RFC-1305 передача точного времени через глобальную сеть Интернет осуществляется с использованием протокола NTP версии 3.0. Часы тайм-серверов согласованы с UTC (универсальное координированное время в данном часовом поясе) с погрешностью, не превышающей 10 мкс. Синхронизация сервера БД АИИС КУЭ осуществляется от тайм-сервера, обеспечивающего передачу точного времени через глобальную сеть Интернет. СОЕВ выполняет законченную функцию измерений времени, имеет нормированные метрологические характеристики и обеспечивает автоматическую корректировку времени.

Сервер БД АИИС КУЭ периодически (1 раз в час) сравнивает свое системное время с временем тайм-сервера, синхронизация осуществляется не зависимо от величины расхождения показаний часов сервера и тайм-сервера. Синхронизация времени в ИК происходит при каждом сеансе счетчика с ИВК, который составляет 1 раз в 30 минут. Корректировка выполняется при расхождении времени счетчика со временем сервера на ±3 с, но не чаще чем раньше раз в сутки. Задержки в каналах связи составляют не более 0,2 с. СОЕВ обеспечивает синхронизацию времени от источника точного времени при проведении измерений количества электроэнергии с точностью не хуже ±5 с/сут.

Журналы событий счетчиков и сервера отражают факты коррекции времени с фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии не ниже 7,0, в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Метрологические значимые модули ПО

Tuosingu i Welposioin leekile sha himble mogysh	110
Идентификационные признаки	Значение
Идентификационное наименование ПО	ПК «Энергосфера»
	Библиотека pso_metr.dll
Номер версии (идентификационный номер)	1.1.1.1
ПО	1.1.1.1
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B
Алгоритм вычисления цифрового	MD5
идентификатора ПО	WID3

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав ИК АИИС КУЭ и их основные метрологические характеристики

X		Измерительные компоненты					Метрологические характеристики ИК		
Наименование объекта	TT	ТН	Счётчик	Сервер БД	Вид электроэнергии	Основная погрешность, %	Погрешность в рабочих условиях, %		
1	2	3	4	5	6	7	8	9	
			ПС 1	10/35/6 кВ «Самај	ота»				
1	ПС 110 кВ Самарта ввод	ТФЗМ 110Б-IV Кл. т. 0,5	НКФ-110 Кл. т. 0,5	ПСЧ-4ТМ.05М	Кл. т. 0,5S/1,0 ПСЧ-4TM.05М	активная	±1,2	±3,3	
	110 кВ Т-1	150/5	110000:√3/100:√3	KJI. T. 0,55/1,0		реактивная	±2,8	±5,7	
2	ПС 110 кВ Самарта ввод	ТФЗМ 110Б-IV Кл. т. 0,5	НКФ-110 Кл. т. 0,5			активная	±1,2	±3,3	
	110 кВ Т-2	150/5	110000:√3/100:√3	Кл. т. 0,5S/1,0	Кл. т. 0,58/1,0		реактивная	±2,8	±5,7
3	ПС 110 кВ Самарта, ОРУ-35	ТФЗМ 35А-У1 Кл. т. 0,5	НАМИ-35 УХЛ1 Кл. т. 0,5	ПСЧ-4ТМ.05М	HP ProLiant DL 360G6	активная	±1,2	±3,3	
	кВ, яч.19	100/5	35000/100	Кл. т. 0,58/1,0		реактивная	±2,8	±5,7	
4	ПС 110 кВ Самарта, ОРУ-35	ТФЗМ 35А-У1 Кл. т. 0,5	НАМИ-35 УХЛ1 Кл. т. 0,5	ПСЧ- 4ТМ.05МК		активная	±1,2	±3,3	
·	кВ, яч.21	300/5	35000/100	Кл. т. 0,58/1,0		реактивная	±2,8	±5,7	
5	ПС 110 кВ Самарта, ОРУ-35	ТФЗМ 35А-У1 Кл. т. 0,5	НАМИ-35 УХЛ1 Кл. т. 0,5	ПСЧ- 4ТМ.05МК		активная	±1,2	±3,3	
	кВ, яч.29	300/5	35000/100	Кл. т. 0,5S/1,0		реактивная	±2,8	±5,7	

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
	ПС 110/6 кВ «Ирокинда»							
6	ПС 110 кВ «Ирокинда», ввод 110 кВ Т-1	ТВГ-110-0,5S Кл. т. 0,5S 75/1	НАМИ-110 УХЛ1	ПСЧ-4ТМ.05М Кл. т. 0,5S/1,0	HP ProLiant DL 360G6	активная	±1,0	±3,4
			Кл. т. 0,2 110000:√3/100:√3			реактивная	±2,6	±5,7
7	ПС 110 кВ «Ирокинда»,	ТВГ-110-0,5S Кл. т. 0,5S 75/1	НАМИ-110 УХЛ1	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5		активная	±0,9	±2,9
,	«ирокинда», ввод 110 кВ Т-2		Кл. т. 0,2 110000:√3/100:√3			реактивная	±2,4	±4,7
8	ПС 110 кВ «Ирокинда», ТЛК-10 НАМИТ-10-2 ПСЧ-4ТМ.05М КЛ. т. 0,5 КЛ. т. 0,5		активная	±1,2	±3,3			
	1СШ, яч.10, ф.Поселок	150/5	6000/100	Кл. т. 0,5\$/1,0		реактивная	±2,8	±5,7
Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с					±5	5		

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд, I=0.05 $I_{\text{ном}}$, I=0.02 $I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 8 от 0 до плюс 40 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

1 аолица 3 — Основные технические характеристики ИК	n
Наименование характеристики	Значение
Количество измерительных каналов	8
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, $\%$ от $U_{\text{ном}}$	от 90 до 110
- ток, % от I _{ном}	от 2 до 120
- коэффициент мощности	от 0,5 инд. до 0,8 емк.
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °С:	от -40 до +60
- температура окружающей среды в месте расположения	
сервера, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчика ПСЧ-4ТМ.05М	140000
для электросчетчика ПСЧ-4ТМ.05МК	165000
для электросчетчика СЭТ-4ТМ.03М	165000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	114
- при отключении питания, лет, не менее	40
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и с использованием каналов сотой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - факты связи со счетчиком, приведшие к каким-либо изменениям данных и конфигурации;
 - отсутствие напряжения по каждой фазе с фиксацией времени пропадания и восстановления напряжения;
 - коррекции времени в счетчике;
 - перерывы питания электросчетчика с фиксацией времени пропадания и восстановления;
 - формирование обобщенного события (или по каждому факту) по результатам автоматической самодиагностики;
- журнал сервера БД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере БД;
 - пропадание и восстановление связи со счетчиком;
 - полученные «Журналы событий» ИИК;
 - попыток несанкционированного доступа;
 - замена счетчика;
 - изменение значений результатов измерений;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).
- о состоянии средств измерений (функция автоматизирована);

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 1 раз в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ПАО «Бурятзолото» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.
Трансформатор тока	ТФЗМ 110Б-IV	26422-06	6
Трансформатор тока	ТФЗМ 35А-У1	26417-06	7
Трансформатор тока	TBΓ-110-0,5S	70905-18	6
Трансформатор тока	ТЛК-10	9143-06	2
Трансформатор напряжения	НКФ-110	26452-06	6
Трансформатор напряжения	НАМИ-35 УХЛ1	19813-05	2
Трансформатор напряжения	НАМИ-110 УХЛ1	24218-08	6
Трансформатор напряжения	НАМИТ-10-2	18178-99	1
Счётчик электрической			
энергии	ПСЧ-4ТМ.05М	36355-07	5
многофункциональный			
Счётчик электрической			
энергии	ПСЧ-4ТМ.05МК	64450-16	1
многофункциональный			
Счётчик электрической			
энергии	ПСЧ-4ТМ.05МК	46634-11	1
многофункциональный			
Счётчик электрической			
энергии	CЭT-4TM.03M	36697-12	1
многофункциональный			
Сервер баз данных	HP ProLiant DL 360G6	-	1
Программное обеспечение	ПК «Энергосфера»	-	1
Методика поверки	МП 018-2018	-	1
Паспорт-Формуляр	77148049.422222.049-ПС		1

Поверка

осуществляется по документу МП 018-2018 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Бурятзолото». Методика поверки», утвержденному ООО «Спецэнергопроект» 01.06.2018 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков ПСЧ-4ТМ.05М по документу «Счетчики электрической энергии ПСЧ-4ТМ.05М. Руководство по эксплуатации. Приложение. Методика поверки» ИЛГШ.411152.146РЭ, согласованному с ГЦИ СИ ФГУ «Нижегородский ЦСМ» 21 ноября 2007 г.;
- счетчиков ПСЧ-4ТМ.05МК по документу «Счетчик электрической энергии ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.167РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» 21 марта 2011 г.;
- счетчиков ПСЧ-4ТМ.05МК по документу ИЛГШ. 411152.167РЭ1 «Счетчик электрической энергии многофункциональный ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки» утвержденному ФБУ «Нижегородский ЦСМ» 28 апреля 2016 г.

- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» 04 мая 2012 г.;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 46656-11;
- термогигрометр CENTER (мод.315): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, Рег. № 22129-09.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

«Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Бурятзолото», аттестованная ООО «Спецэнергопроект», аттестат об аккредитации N RA.RU.312236 от 20.07.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Бурятзолото»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Публичное акционерное общество «Бурятзолото» (ПАО «Бурятзолото»)

ИНН 0323027345

Адрес: 670045, Республика Бурятия, г. Улан-Удэ, ул. Шаляпина, д. 5 В

Телефон: +7 (3012) 48-02-00, 48-02-12, факс: +7 (3012) 48-02-02

E-mail: <u>buryatzoloto@nordgold.com</u> Web-сайт: http://buryatzoloto.ru/

Заявитель

Общество с ограниченной ответственностью «Стройэнергетика»

(ООО «Стройэнергетика»)

Адрес: 129337, г. Москва, ул. Красная Сосна, д. 20, стр. 1, комн. 4

Телефон: +7 (926) 786-90-40 E-mail: <u>Stroyenergetika@gmail.com</u>

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Адрес: 119119, г. Москва, Ленинский проспект, д. 42, корп. 6, этаж 2, пом. II, III, комн. № 12, № 1

Юридический адрес: 111024, г. Москва, ул. Авиамоторная, д. 50, стр. 2, пом. XIV, комн. № 11

Телефон: +7 (985) 992-27-81

E-mail: info.spetcenergo@gmail.com

Аттестат аккредитации ООО «Спецэнергопроект» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312426 от 30.01.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2018 г.