ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) «Союзпрофмонтаж»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) «Союзпрофмонтаж» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя центральный сервер баз данных (сервер) с программным обеспечением (ПО) «АльфаЦЕНТР», автоматизированные рабочие места (АРМы), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи интерфейса RS-485 поступает на GSM-модем, далее по каналу связи стандарта GSM — на сервер, где осуществляется вычисление электрической энергии и мощности с учетом коэффициентов трансформации TT и TH, формирование и хранение поступающей информации, оформление отчетных документов.

Передача информации от уровня ИВК в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта оптового рынка электроэнергии (ОРЭ), в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде хml-файлов формата 80020 в соответствии с действующими требованиями к предоставлению информации.

Результаты измерений электроэнергии передаются в целых числах кВт·ч и соотнесены с единым календарным временем.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы сервера. СОЕВ имеет доступ к серверу синхронизации шкалы времени по протоколу NTP – NTP-серверу ФГУП «ВНИИФТРИ», обеспечивающему передачу точного времени через глобальную сеть Интернет. Синхронизация системного времени NTP-серверов первого уровня осуществляется от сигналов шкалы времени Государственного первичного эталона времени и частоты. Погрешность синхронизации системного времени NTP-серверов первого уровня относительно шкалы времени UTC (SU) не превышает 10 мс. Сравнение часов сервера с часами NTP-сервера, передача точного времени через глобальную сеть интернет осуществляется с помощью протокола NTP в соответствии с международным стандартом сетевого взаимодействия. Контроль показаний времени часов сервера осуществляется каждые 30 мин, коррекция часов сервера производится при расхождении с часами NTP-сервера на величину более ± 1 с.

Сравнение показаний часов счетчиков с часами сервера осуществляется во время каждого сеанса связи со счетчиком, но не реже 1 раза в сутки. Корректировка часов счетчиков производится при расхождении показаний часов счетчиков и часов сервера на величину более ± 1 с.

Журналы событий счетчика и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 – Идентификационные данные ПО «АльфаЦЕНТР»

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ac_metrology.dll
Номер версии (идентификационный номер) ПО	не ниже 15.07.03
Цифровой идентификатор ПО	3e736b7f380863f44cc8e6f7bd211c54
Алгоритм вычисления цифрового идентификатора ПО	MD5

Метрологические и технические характеристики

Таблина 2 — Состав ИК АИИС КУЭ и их метрологические характеристики

		Измерительные компоненты					Метрологические характеристики ИК	
Но- мер ИК	Наименование	TT	ТН	Счетчик	Сервер	Вид элек- трической энергии	Границы допускаемой основной отно- сительной погрешности, $(\pm\delta)$ %	Границы допускаемой относительной погрешности в рабочих условиях, $(\pm \delta)$ %
1	ВЛ-6 кВ ф. «Строительная-7», КРУН-1 6 кВ	ТОЛ-10-I Кл.т. 0,5S 200/5 Рег. № 47959-16 Фазы: А; В; С	ЗНОЛ.06-6 Кл.т. 0,5 6000/√3/100/√3 Рег. № 46738-11 Фазы: A; B; C	Меркурий 230 ART- 00 PQRSIGDN Кл.т. 0,5S/1,0 Рег. № 23345-07	HP ProLi-	Активная Реактив- ная	1,3 2,5	3,4 5,7
2	ВЛ-6 кВ ф. «Строительная- 14», КРУН-2 6 кВ	ТЛО-10 Кл.т. 0,5S 200/5 Рег. № 25433-11 Фазы: А; В; С	ЗНОЛ.06-6 Кл.т. 0,5 6000/√3/100/√3 Рег. № 46738-11 Фазы: A; B; C	Меркурий 230 ART- 00 PQRSIGDN Кл.т. 0,5S/1,0 Рег. № 23345-07	ant ML30 Gen9	Активная Реактив- ная	1,3 2,5	3,4 5,7

Примечания:

- В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0.95.
 - Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
 - Погрешность в рабочих условиях указана для тока 2 % от $I_{\text{ном}}$, $\cos i = 0.8$ инд.
- ТТ по ГОСТ 7746-2015, ТН по ГОСТ 1983-2015, счетчики в режиме измерений активной электрической энергии по ГОСТ Р 52323-2005, в режиме измерений реактивной электрической энергии по ГОСТ Р 52425-2005.
- Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество ИК	2
Нормальные условия:	
параметры сети:	
напряжение, % от Uном	от 95 до 105
ток, % от Іном	от 1 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, ${}^{\circ}\mathrm{C}$	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Uном	от 90 до 110
ток, % от Іном	от 1 до 120
коэффициент мощности соѕф	от 0,5 до 1,0
частота, Гц	от 49,6 до 50,4
температура окружающей среды для ТТ и ТН, °С	от -45 до +40
температура окружающей среды в месте расположения счетчиков, °С	от 0 до +35
температура окружающей среды в месте расположения сервера, °С	от +15 до +25
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчиков:	
среднее время наработки на отказ, ч, не менее	150000
среднее время восстановления работоспособности, ч	2
для сервера:	
среднее время наработки на отказ, ч, не менее	100000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков:	
тридцатиминутный профиль нагрузки в двух направлениях, сут,	
не менее	85
при отключении питания, лет, не менее	5
для сервера:	
хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере;
 - пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:

счетчика электрической энергии;

промежуточных клеммников вторичных цепей напряжения;

испытательной коробки;

сервера.

- защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформаторы тока опорные	ТОЛ-10-І	3
Трансформаторы тока	ТЛО-10	3
Трансформаторы напряжения заземляемые	ЗНОЛ.06-6	6
Счетчики электрической энергии	Меркурий 230ART	2
трехфазные статические	теркурии 230АК і	2
Сервер	HP ProLiant ML30 Gen9	1
Автоматизированное рабочее место	_	2
Методика поверки	МП ЭПР-082-2018	1
Формуляр-паспорт	01.2018.Союзпрофмонтаж-АУ.ФО-ПС	1

Поверка

осуществляется ПО документу МΠ ЭПР-082-2018 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС «Союзпрофмонтаж». Методика поверки», утвержденному ООО «ЭнергоПромРесурс» 17.05.2018 г.

Основные средства поверки:

- средства поверки в соответствии с нормативными документами на средства измерений, входящие в состав АИИС КУЭ;
- по МИ 3196-2009 ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей;
- по МИ 3195-2009 ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей;

- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (регистрационный номер в Федеральном информационном фонде 46656-11);
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками и с ПО для работы с радиочасами МИР РЧ-02;
- термогигрометр CENTER (мод.315) (регистрационный номер в Федеральном информационном фонде 22129-09);
- барометр-анероид метеорологический БАММ-1 (регистрационный номер в Федеральном информационном фонде 5738-76);
- миллитесламетр портативный универсальный ТПУ (регистрационный номер в Федеральном информационном фонде 28134-04);
- прибор Энерготестер ПКЭ-А (регистрационный номер в Федеральном информационном фонде 53602-13).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ «Союзпрофмонтаж», свидетельство об аттестации № 097/RA.RU.312078/2018.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) «Союзпрофмонтаж»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ПКФ «Тенинтер» (ООО «ПКФ «Тенинтер»)

ИНН 7721777526

Адрес: 109444, г. Москва, Ферганская ул., д. 6, стр. 1

Телефон (факс): (495) 788-48-25

Web-сайт: teninter.com

Испытательный центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс»

(ООО «ЭнергоПромРесурс»)

Адрес: 143444, Московская обл., Красногорский район, г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2018 г.