ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная отделения ЛВЖ и подготовки цистерн цеха СНЕВ ООО «Саратоворгсинтез»

Назначение средства измерений

Система измерительная отделения ЛВЖ и подготовки цистерн цеха СНЕВ ООО «Саратоворгсинтез» (далее – ИС) предназначена для измерений параметров технологического процесса в реальном масштабе времени (температуры, давления, перепада давления, уровня, объемного расхода, массового расхода).

Описание средства измерений

Принцип действия ИС основан на непрерывном измерении, преобразовании и обработке при помощи комплексов измерительно-вычислительных КИРАС (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (далее – регистрационный номер) 20719-06) (далее – ИВК КИРАС) в комплекте с модулями сбора информации ICM-046 (регистрационный номер 20717-00) (далее – модуль ICM-046) входных сигналов, поступающих по измерительным каналам (далее – ИК) от первичных и промежуточных измерительных преобразователей (далее – ИП).

ИС представляет собой единичный экземпляр измерительной системы, спроектированной для конкретного объекта из компонентов отечественного и импортного изготовления. Монтаж и наладка ИС осуществлены непосредственно на объекте эксплуатации в соответствии с проектной документацией ИС и эксплуатационными документами ее компонентов.

ИС осуществляет измерение параметров технологического процесса следующим образом:

- первичные ИП преобразуют текущие значения параметров технологического процесса в электрические сигналы (аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА, сигналы термопреобразователей сопротивления по ГОСТ 6651–2009);
- аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА и сигналы термопреобразователей сопротивления по ГОСТ 6651–2009 от первичных ИП поступают на соответствующие входы модулей ICM-046 (в ряде каналов сигналы поступают через промежуточные ИП);
- цифровые коды, преобразованные посредством модулей ICM-046 в значения физических параметров технологического процесса, а также данные с интерфейсных входов отображаются на мнемосхемах мониторов операторских станций управления в виде числовых значений, трендов, текстов, рисунков и цветовой окраски элементов мнемосхем, а также интегрируется в базу данных ИС.

Сбор информации о состоянии технологического процесса осуществляется посредством аналоговых и дискретных сигналов, поступающих по соответствующим ИК. ИС включает в себя также резервные ИК.

ИС выполняет следующие функции:

- автоматизированное измерение, регистрация, обработка, контроль, хранение и индикация параметров технологического процесса;
- предупредительная и аварийная световая и звуковая сигнализации при выходе параметров технологического процесса за установленные границы и при обнаружении неисправности в работе оборудования;
 - управление технологическим процессом в реальном масштабе времени;
 - противоаварийная защита оборудования;
- представление технологической и системной информации на операторской станции управления;
 - накопление, регистрация и хранение поступающей информации;
 - самодиагностика;
 - автоматическое составление отчетов и рабочих (режимных) листов;
 - вывод данных на печать;
- защита системной информации от несанкционированного доступа программным средствам и от изменения установленных параметров.

Состав ИК ИС приведен в таблице 1.

Таблица 1 – Состав ИК ИС

	Состав ИК ИС					
Наиме-		Вторичный ИП				
нование	Первичный ИП	Модули	Модуль			
ИК	первичный ип	ввода/вывода	обработки			
		сигналов	данных			
1	2	3	4			
ИК темпера- туры	Термопреобразователи сопротивления взрывозащищенные Метран-250 модификации ТСМ Метран-253 (регистрационный номер 21969-06) (далее – Метран-253) Термопреобразователи сопротивления взрывозащищенные Метран-250 модификации ТСМ Метран-253 (регистрационный номер 21969-11) (далее – ТСМ Метран-253) Термопреобразователи универсальные ТПУ 0304 модификации ТПУ 0304/М1-Н (регистрационный номер 50519-12) (далее – ТПУ 0304/М1-Н) Термопреобразователи с унифицированным выходным сигналом ТСМУ 0104 (регистрационный номер 29336-05) (далее – ТСМУ 0104) Преобразователи измерительные Rosemount 248 (регистрационный номер 48988-12) (далее – Rosemount 248) в комплекте с термопреобразователями сопротивления платиновыми серии 65 (регистрационный номер 22257-11) (далее – ТСП 65)	Модуль ІСМ-046	ИВК КИРАС			
ИК давления	Преобразователи давления измерительные EJA модели EJA 530 (регистрационный номер 14495-09) (далее – EJA 530)	Модуль ІСМ-046	ИВК КИРАС			

1	2.	3	4
1	Датчик давления Метран-100 модификации	<u> </u>	Т
	Метран-100-ДИ (регистрационный номер 22235-08) (далее – Метран-100-ДИ)		
ИК давления	Преобразователи давления измерительные АИР-20/М2 модификации АИР-20/М2-ДИ (регистрационный номер 30402-05) (далее – АИР-20/М2-ДИ)	Модуль ІСМ-046	ИВК КИРАС
	Преобразователи давления измерительные 2088 модели 2088G (регистрационный номер 16825-08) (далее – 2088G)		
ИК перепада давления	Датчик давления Метран-100 модификации Метран-100-ДД (регистрационный номер 22235-08) (далее – Метран-100-ДД)	Модуль ІСМ-046	ИВК КИРАС
ИК уровня	Уровнемеры бесконтактные микроволновые VEGAPULS 6* модификации VEGAPULS 61 (регистрационный номер 27283-04) (далее – VEGAPULS 61) Уровнемеры микроволновые бесконтактные VEGAPULS 6* модификации VEGAPULS 61 (регистрационный номер 27283-09) (далее – УМБ VEGAPULS 61) Уровнемеры волноводные радарные 5300 модели 5301 (регистрационный номер 38679-08) (далее – 5301) Уровнемеры 5400 исполнения 5401 (регистрационный номер 30247-11) (далее – 5401)	Модуль ІСМ-046	ИВК КИРАС
ИК массового расхода	Счетчики-расходомеры массовые кориолисовые ROTAMASS модели RCCT38 (регистрационный номер 27054-14) (далее – RCCT38) Расходомеры-счетчики вихревые объемные YEWFLO DY (регистрационный номер	Модуль ІСМ-046	ИВК КИРАС
ИК объемного расхода	17675-09) (далее – YEWFLO DY) Расходомеры с первичным преобразователем IFS 4000 модификации IFM 4080 (регистрационный номер 13891-99) (далее – IFM 4080) YEWFLO DY	Модуль ІСМ-046	ИВК КИРАС

Программное обеспечение

Программное обеспечение (далее – Π O) ИС (Π O ИВК КИРАС) обеспечивает реализацию функций ИС. Π O ИС включает в себя встроенное и внешнее Π O.

Встроенное ПО устанавливается в энергонезависимую память измерительных модулей в производственном цикле и в процессе эксплуатации изменению не подлежит. Внешнее ПО «SCADA КИРАС» устанавливаются на персональные компьютеры операторских станций управления. Внешнее ПО не дает доступ к внутренним программным микрокодам измерительных модулей и не позволяет вносить изменения в встроенное ПО.

Защита ПО ИС от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу осуществляется путем идентификации, защиты от несанкционированного доступа.

ПО ИС защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров путем введения пароля, ведения доступного только для чтения журнала событий.

Уровень защиты ПО ИС «средний» в соответствии с Р 50.2.077–2014.

Идентификационные данные ПО ИС приведены в таблице 2.

Таблица 2 – Идентификационные данные ПО ИС

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	SCADA КИРАС
Номер версии (идентификационный номер) ПО	не ниже 4.0.0.1
Цифровой идентификатор ПО	_

Метрологические и технические характеристики

Основные технические характеристики ИС представлены в таблице 3.

Таблица 3 – Основные технические характеристики ИС

Наименование характеристики	Значение
Количество ИК (включая резервные), не более	150
Параметры электрического питания:	
– напряжение переменного тока, В	380^{+57}_{-76} ; 220^{+22}_{-33}
– частота переменного тока, Гц	50±1
Потребляемая мощность, кВ·А, не более	5
Габаритные размеры отдельных шкафов, мм, не более:	
– ширина	1200
– высота	2000
– глубина	600
Масса отдельных шкафов, кг, не более	400
Условия эксплуатации:	
а) температура окружающей среды, °С:	
 в местах установки первичных ИП ИК 	от -40 до +50
 в месте установки вторичной части ИК 	от +15 до +25
б) относительная влажность (без конденсации влаги), %	от 30 до 80
в) атмосферное давление, кПа	от 84,0 до 106,7

Примечание – ИП, эксплуатация которых в указанных диапазонах температуры окружающей среды и относительной влажности не допускается, эксплуатируются при температуре окружающей среды и относительной влажности, указанных в технической документации на данные ИП.

Метрологические характеристики ИК ИС приведены в таблице 4.

Таблица 4 – Метрологические характеристики ИК ИС

Маже в тольные карактеристики и к ис		Метрологические характеристики измерительных компонентов ИК				
Метрологические характеристики ИК		Первичный ИП		Вторичный ИП		
Наимено- вание ИК	Диапазоны измерений	Пределы допускаемой основной погрешности	Тип (выходной сигнал)	Пределы допускаемой основной погрешности	Тип модуля ввода/вывода	Пределы допускаемой основной погрешности
1	2	3	4	5	6	7
	от -50 до +50 °C от -50 до +150 °C ¹⁾	$\Delta = \pm 0,52 ^{\circ}\text{C}$ см. примечание 4	Метран-253 (HCX 50M)	$\Delta = \pm (0.25 + 0.0035 \cdot t) ^{\circ}C$		
ИК	от -50 до +50 °C от -50 до +150 °C от -50 до +150 °C ¹⁾	$\Delta = \pm 0,65$ °C $\Delta = \pm 1,24$ °C см. примечание 4	ТСМ Метран-253 (HCX 50M)	$\Delta = \pm (0,3+0,005 \cdot t) ^{\circ}C$	Модуль ІСМ-046	g=±0,2 %
темпера- туры	от 0 до +200 °C от -50 до +600 °C ¹⁾	$\Delta = \pm 0,5$ °C см. примечание 4	ТПУ 0304/М1-Н (от 4 до 20 мА)	$\gamma = \pm 0.2$ %		
Туры	от 0 до +100 °C от -196 до +600 °C ¹⁾	$\Delta = \pm 0.9$ °C см. примечание 4	ТСП 65 (HCX Pt100); Rosemount 248 (от 4 до 20 мА)	TCII 65: $\Delta = \pm (0.3+0.005 \cdot t)$ °C; Rosemount 248: $\gamma = \pm 0.1$ %	Модуль ІСМ-046	g=±0,1 %
	от -50 до +50 °C от -50 до +150 °C ¹⁾	$\Delta = \pm 0.3 ^{\circ}\text{C}$ см. примечание 4	ТСМУ 0104 (от 4 до 20 мА)	$\gamma = \pm 0.25 \%$		
	от 0 до 16 кгс/см ² ; от 0 до 25 кгс/см ² ; от 0 до 2 МПа ¹⁾ ; от 0 до 10 МПа ¹⁾	g от ±0,25 до ±0,41 % (см. примечание 4)	ЕЈА 530A (от 4 до 20 мА)	g от ±0,2 до ±0,35 %	Модуль ІСМ-046	g=±0,1 %
ИК давления	от 0 до 2,5 МПа от 0 до 25 МПа ³⁾	$\gamma = \pm 0,57 \%$ см. примечание 4	АИР-20/М2-ДИ (от 4 до 20 мА)	$\gamma = \pm 0.5$ %		
	от 0 до 0.5 кгс/см ² ; от 0 до 6 кгс/см ²	$\gamma = \pm 0.14$ %	2088G (от 4 до 20 мА)	$\gamma=\pm 0.075~\%$		
	от 0 до 27,58 МПа ¹⁾	см. примечание 4		g от ±0,075 до ±0,1 %		
	от 0 до 10 кгс/см ² от 0,04 до 100 МПа ¹⁾	$\gamma = \pm 0.3 \%$	Метран-100-ДИ (от 4 до 20 мА)	$\gamma = \pm 0.25 \%$		
ИК перепада давления	от 0 до 6,3 кПа от 0 до 63 кПа ¹⁾	$\gamma = \pm 0,57 \%$ см. примечание 4	Метран-100-ДД (от 4 до 20 мА)	$\gamma = \pm 0.5$ %	Модуль ІСМ-046	g=±0,1 %

1	2	3	4	5	6	7
	от 0 до 4 м	$\Delta=\pm7,1\mathrm{mm}$	VEGAPULS 61	$\Delta=\pm 5~\mathrm{MM}$		
	от 0 до 10 м ¹⁾	см. примечание 4	(от 4 до 20 мА)	Z - 23 MM		
	от 0 до 4 м	$\Delta=\pm 5,5~\mathrm{MM}$	УМБ VEGAPULS 61			
	от 0 до 8 м	$\Delta = \pm 9,4 \text{ MM}$	(от 4 до 20 мА)	$\Delta=\pm 3\mathrm{MM}$		
	от 0 до 20 м ¹⁾	см. примечание 4	(61 1 go 20 m1)			
	от 0 до 1400 мм	$\Delta = \pm 3,65 \text{ MM}$		$\Delta = \pm 3$ мм (при измерении		
	от 0 до 3360 мм	$\Delta = \pm 4,96 \text{ mm}$		расстояния до 10 м до		
ИК уровня ²⁾	от 0,4 до 50 м ¹⁾	см. примечание 4	5301 (от 4 до 20 мА)	поверхности среды); $\gamma = \pm 0.03 \%$ (при измерении расстояния более 10 м до поверхности среды)	Модуль ІСМ-046	g=±0,1 %
	от 150 до 3396 мм (шкала от 0 до 3396 мм)	$\Delta = \pm 33,2$ мм (в диапазоне от 150 до 400 мм); $\Delta = \pm 11,6$ мм (в диапазоне от 400 до 3396 мм)	5401 (от 4 до 20 мА)	$\Delta = \pm 30$ мм (в диапазоне от 150 до 400 мм); $\Delta = \pm 10$ мм (в диапазоне от 400 до 30000 мм)		
	от 150 до 30000 мм ¹⁾ (шкала от 0 до 30000 мм)	см. примечание 4				
ИК массового расхода	от 5 до 9 т/ч (шкала от 0 до 9 т/ч) от 5 до 32 т/ч (шкала от 0 до 32 т/ч) от 5 до 50 т/ч ¹⁾ (шкала от 0 до 50 т/ч)	см. примечание 4	RCCT38 (от 4 до 20 мА)	Рабочая среда — жидкость: $\delta = \pm (0.1 + \text{Z/M} \cdot 100) \text{ %;}$ Рабочая среда — газ: $\delta = \pm (0.5 + \text{Z/M} \cdot 100) \text{ %}$	Модуль ІСМ-046	g=±0,1 %
	от 0 до 3 т/ч	см. примечание 4	YEWFLO DY (от 4 до 20 мА)	$\delta = \pm 2.0 \%$ (при V ≤ 35 м/с); $\delta = \pm 2.5 \%$ (при 35 $<$ V ≤ 80 м/с)		
ИК объемного расхода	от 0,08 до 50 $\text{м}^3/\text{ч}$ (шкала от 0 до 50 $\text{м}^3/\text{ч}$) от 0,08 до 100000 $\text{м}^3/\text{ч}^{1)}$	см. примечание 4	IFM 4080 (от 4 до 20 мА)	$\delta = \pm 0.3$ %	Модуль ІСМ-046	g=±0,1 %

1	2	3	4	5	6	7
ИК объемного расхода	от 0 до 320 м ³ /ч от 0 до 1140 м ³ /ч	см. примечание 4	YEWFLO DY (от 4 до 20 мА)	В зависимости от Ду: жидкость: $-15 \text{ мм: } \delta = \pm 1,0 \text{ % (при } 20000 \leq \text{Re} < 2000 \text{Ду}) \text{ и } \delta = \pm 0,75 \text{ % (при } 2000 \text{Ду} \leq \text{Re});$ $-25 \text{ мм: } \delta = \pm 1,0 \text{ % (при } 20000 \leq \text{Re} < 1500 \text{Дy}) \text{ и } \delta = \pm 0,75 \text{ % (при } 1500 \text{Дy} \leq \text{Re});$ $-\text{ от } 40 \text{ до } 100 \text{ мм: } \delta = \pm 1,0 \text{ % (при } 20000 \leq \text{Re} < 1000 \text{Дy}) \text{ и } \delta = \pm 0,75 \text{ % (при } 1000 \text{Дy} \leq \text{Re});$ $\text{газ и пар: } \delta = \pm 1,0 \text{ % (при } \text{V} \leq 35 \text{ м/c}); \delta = \pm 1,5 \text{ % (при } 35 < \text{V} \leq 80 \text{ м/c})$	Модуль ІСМ-046	g=±0,1 %
ИК силы тока	от 4 до 20 мА	g=±0,1 %	_	_	Модуль ІСМ-046	g=±0,1 %

¹⁾ Указан максимальный диапазон измерений (диапазон измерений может быть настроен на меньший диапазон в соответствии с эксплуатационной документацией на первичный ИП ИК).

Примечания

- 2 Приняты следующие обозначения:
 - Δ абсолютная погрешность, в единицах измеряемой величины;
 - δ относительная погрешность, %;
- $-\gamma$ приведенная погрешность (нормирующим значением для приведенной погрешности является разность между максимальным и минимальным значениями диапазона измерений), %;
 - Z стабильность нуля при измерении массового расхода, т/ч;
 - М массовый расход, т/ч;
 - Ду диаметр условного прохода YEWFLO DY, мм.
 - 3 Шкала ИК, применяемых для измерения перепада давления на стандартном сужающем устройстве, установлена в ИС в единицах измерения расхода.

²⁾ Шкала ИК установлена в ИС в процентах (от 0 до 100 %).

³⁾ Указан максимальный диапазон измерений (верхний предел измерений АИР-20/М2-ДИ может быть настроен на 4,6,10,16 МПа исходя из индекса заказа).

¹ НСХ – номинальная статическая характеристика.

1 2 3 4 5 6 7

4 Пределы допускаемой основной относительной погрешности ИК $d_{_{\rm ИК}}$, %, рассчитывают по формуле

$$\mathbf{d}_{\mathrm{UK}} = \pm 1.1 \times \sqrt{\mathbf{d_{\Pi\Pi}}^{2} + \mathbf{\mathop{complex}\limits_{e}^{\mathbf{g}_{B\Pi}}} \times \frac{\mathbf{X_{\max}} - \mathbf{X_{\min}}}{\mathbf{X_{\max}}} \frac{\ddot{\mathbf{o}}^{2}}{\ddot{\mathbf{o}}}},$$

где d_{mi} пределы допускаемой основной относительной погрешности первичного ИП ИК, %;

д пределы допускаемой основной приведенной погрешности вторичного ИП ИК, %;

Х значение измеряемого параметра, соответствующее максимальному значению диапазона аналогового сигнала, в единицах измерений измеряемой величины;

X_{min} – значение измеряемого параметра, соответствующее минимальному значению границы диапазона аналогового сигнала, в единицах измерений измеряемой величины:

 $X_{_{\rm \tiny HMM}}$ — измеренное значение, в единицах измерений измеряемой величины.

5 Для расчета погрешности ИК в условиях эксплуатации:

приводят форму представления основных и дополнительных погрешностей измерительных компонентов ИК к единому виду (приведенная, относительная, абсолютная);

– для каждого измерительного компонента ИК рассчитывают пределы допускаемых значений погрешности в условиях эксплуатации путем учета основной и дополнительных погрешностей от влияющих факторов.

Пределы допускаемых значений погрешности D_{CM} измерительного компонента ИК в условиях эксплуатации вычисляют по формуле

$$D_{\text{CM}} = \pm \sqrt{D_0^2 + \mathop{\bm{\mathring{o}}}_{i=0}^n \; D_i^2} \ ,$$

где D_0 – пределы допускаемых значений основной погрешности измерительного компонента;

n – число учитываемых влияющих факторов;

р_і – пределы допускаемой дополнительной погрешности измерительного компонента от *i*-го влияющего фактора в условиях эксплуатации при общем числе *n* учитываемых влияющих факторов.

Для каждого ИК рассчитывают границы, в которых с вероятностью равной 0,95 должна находится его погрешность $D_{\text{ИК}}$, в условиях эксплуатации по формуле

$$D_{\text{MK}} = \pm 1.1 \times \sqrt{\underset{j=0}{\overset{k}{\circ}} D_{\text{CM}_{j}}^{2}} ,$$

где $D_{\text{CU}_{i}}$ – пределы допускаемых значений погрешности D_{CU} *j*-го измерительного компонента ИК в условиях эксплуатации;

k – количество измерительных компонентов ИК.

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Комплектность ИС представлена в таблице 5.

Таблица 5 – Комплектность ИС

Наименование	Обозначение	Количество
Система измерительная отделения ЛВЖ и подготовки цистерн цеха СНЕВ ООО «Саратоворгсинтез», заводской № 526		1 шт.
Руководство по эксплуатации		1 экз.
Паспорт		1 экз.
Методика поверки	МП 1501/1-311229-2018	1 экз.

Поверка

осуществляется по документу МП 1501/1-311229-2018 «Государственная система обеспечения единства измерений. Система измерительная отделения ЛВЖ и подготовки цистерн цеха СНЕВ ООО «Саратоворгсинтез». Методика поверки», утвержденному ООО Центр Метрологии «СТП» 15 января 2018 г.

Основные средства поверки:

- средства измерений в соответствии с документами на поверку средств измерений,
 входящих в состав ИС;
- калибратор многофункциональный MC5-R-IS (регистрационный номер 22237-08).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик ИС с требуемой точностью.

Знак поверки наносится на свидетельство о поверке ИС.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе измерительной отделения ЛВЖ и подготовки цистерн цеха CHEB OOO «Саратоворгсинтез»

ГОСТ Р 8.596–2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Саратоворгсинтез» (ООО «Саратоворгсинтез»)

ИНН 6451122250

Адрес: 410059, г. Саратов, пл. Советско-Чехословацкой дружбы

Телефон: (8452)98-52-09, факс: (8452)98-95-61

Web-сайт: http://www.saratov.lukoil.com

E-mail: office@saratov.lukoil.com

Испытательный центр

Общество с ограниченной ответственностью Центр Метрологии «СТП»

Адрес: 420107, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, корп. 5

Телефон: (843) 214-20-98, факс: (843) 227-40-10

Web-сайт: http://www.ooostp.ru

E-mail: office@ooostp.ru

Аттестат аккредитации ООО Центр Метрологии «СТП» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311229 от 30.07.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2018 г.