ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Наборы калибровочные КНЭМС

Назначение средства измерений

Наборы калибровочные КНЭМС (далее по тексту – наборы КНЭМС), предназначены для измерений амплитудных значений напряжения и силы тока, а также временных параметров высоковольтных импульсных сигналов совместно с осциллографами, вольтметрами и т.п.

Описание средства измерений

Наборы КНЭМС состоят из делителей напряжения и измерительного шунта:

- делителя напряжения импульсного ИДМ 5.1 (ИДМ 5.1);
- шунта измерительного ИШМ 3.1 (ИШМ 3.1);
- делителя напряжения импульсного ИДН 5.1 (ИДН 5.1);
- делителя напряжения низкоомного ИАН 3.1 (ИАН 3.1).

В основе работы делителей напряжения лежит принцип ослабления напряжения при помощи резистивного делителя.

Принцип действия шунта основан на законе Ома: протекающий через резистор импульсный ток вызывает падение напряжения на нем, которое может быть измерено при помощи осциллографа.

ИДМ 5.1 и ИШМ 3.1 конструктивно выполнены в виде прямоугольной металлической коробки с входной высоковольтной однополюсной розеткой для подключения к источнику сигнала и выходным разъёмом ВNС-типа, предназначенным для подключения к измерительному прибору (осциллографу, вольтметру).

ИДН 5.1 и ИАН 3.1 конструктивно выполнены в виде цилиндра с входным коаксиальным высоковольтным разъёмом СР-50-164ФВ4 для подключения к источнику сигнала и выходным разъемом N типа для подключения к осциллографу, или другому регистрирующему оборудованию.

ИДМ 5.1 и ИШМ 3.1 могут быть использованы для измерения параметров испытательных генераторов микросекундных импульсных помех по ГОСТ Р 51317.4.5-99 (IEC 61000-4-5).

ИДН 5.1 и ИАН 3.1 могут использоваться для измерения параметров испытательных генераторов наносекундных импульсных помех по ГОСТ 30804.4.4-2013 (IEC 61000-4-4:2004).

В состав набора КНЭМС также включена пластина преобразовательная $\Pi\Pi$ 2.5 (пластина $\Pi\Pi$ 2.5).

Конструкция пластины $\Pi\Pi$ 2.5 соответствует требованиям Γ OCT 30804.4.4-2013 (IEC 61000-4-4:2004). Пластина $\Pi\Pi$ 2.5 представляет собой металлическую пластину, покрытую изоляционным слоем со всех сторон и предназначена для верификации генераторов наносекундных импульсов с электромагнитными клещами.

Общий вид составных частей набора КНЭМС, с указанием мест нанесения знака утверждения типа и пломбировки приведен на рисунке 1.

Внешний вид пластины ПП 2.5 приведен на рисунке 2.

Рисунок 1 – Общий вид составных частей набора КНЭМС

Рисунок 2 – Внешний вид пластины ПП 2.5

Программное обеспечение

отсутствует.

Метрологические и технические характеристики

Таблица 1 – Метрологические характеристики

Значение
от 0 до 20
200
±1
0,6
10±0,1
50±0,5
от 0 до 500
0,01±0,0001
110±10
±3
±5

Продолжение таблицы 1

Наименование характеристики	Значение
Делитель напряжения импульсный ИДН 5.1	
Рабочий диапазон частот, МГц	от 0 до 400
Коэффициент деления (при работе на нагрузку 50 Ом)	40
Пределы допускаемой относительной погрешности коэффициента деления	
на постоянном токе, %	±1
Неравномерность коэффициента деления, дБ, не более	
в диапазоне частот: от 0 до 100 МГц включ.	0,5
св.100 до 400 МГц	1,0
Входное сопротивление на постоянном токе, Ом	1000±20
Выходное сопротивление на постоянном токе, Ом	50±1,0
КСВН выхода, не более	2,2
Делитель напряжения низкоомный ИАН 3.1	
Рабочий диапазон частот, МГц	от 0 до 400
Коэффициент деления (при работе на нагрузку 50 Ом)	20
Пределы допускаемой относительной погрешности коэффициента деления	
на постоянном токе, %	±1
Неравномерность коэффициента деления, дБ, не более	
в диапазоне частот: от 0 до 100 МГц включ.	0,5
св. 100 до 400 МГц	3,0
Входное сопротивление на постоянном токе, Ом	50±0,5
Выходное сопротивление на постоянном токе, Ом	50±0,5
КСВН входа, не более	3,5
КСВН выхода, не более	2,0

Таблица 2 – Технические характеристики

Наименование характеристики	Значение
Делитель напряжения импульсный ИДМ 5.1	
Максимальное импульсное напряжение (при длительности импульса 700 мкс,	
и частоте повторения не более 1 Гц), кВ, не более	5
Максимальное постоянное или переменное напряжение (действующее	
значение), В, не более	50
Габаритные размеры (длина х ширина х высота), мм, не более	125x60x35
Масса, кг, не более	0,2
Шунт измерительный ИШМ 3.1	
Максимальный импульсный ток (при длительности импульса не более 50 мкс	2,5
и частоте повторения не более 1 Гц), кА, не более	
Максимальный постоянный или переменный ток (действующее значение),	5
А, не более	
Габаритные размеры (длина х ширина х высота), мм, не более	95x60x35
Масса, кг, не более	0,2
Делитель напряжения импульсный ИДН 5.1	
Максимальное импульсное напряжение (при длительности импульса 50 нс	5
и частоте повторения не более 5 кГц), кВ, не более	
Габаритные размеры (диаметр х длина), мм, не более	22x110
Масса, кг, не более	0,2

Продолжение таблицы 2

Наименование характеристики	Значение
Делитель напряжения низкоомный ИАН 3.1	
Максимальное импульсное напряжение (при длительности импульса 50 нс	
и частоте повторения не более 5 кГц), кВ, не более	2,5
Габаритные размеры (диаметр х длина), мм, не более	22x110
Масса, кг, не более	0,2
Пластина преобразовательная ПП 2.5	
Максимальное допустимое напряжение, кВ, не более	2,5
Габаритные размеры (длина х ширина х высота), мм, не более	1130 x 122 x 25
Масса, кг, не более	0,6
Рабочие условия применения:	
– температура окружающего воздуха, °C	от +15 до +30
– относительная влажность, окружающего воздуха, при температуре 25 °C,	
%, не более	80
– атмосферное давление, кПа	от 80 до 106,7

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом, на шильдики, расположенные на корпусах делителей напряжения и шунта ИШМ 3.1 (по технологии фирмы-изготовителя) и на плоскость пластины ПП 2.5 – в виде наклейки.

Комплектность средства измерений

Таблица 3 – Комплектность наборов КНЭМС

Наименование	Обозначение	Количество
Набор калибровочный КНЭМС в составе: *	КНЭМС	
- делитель напряжения импульсный	ИДМ 5.1	1
- делитель напряжения импульсный	ИДН 5.1	1
- делитель напряжения низкоомный	ИАН 3.1	1
- шунт измерительный	ИШМ 3.1	1
- пластина преобразовательная	ПП 2.5	1
Руководство по эксплуатации	26.51.43-001 PЭ	1
Формуляр	26.51.43-001 ФО	1
Методика поверки	651- 18-011 МП	1
Сумка-футляр		1

Поверка

осуществляется в соответствии с документом 651-18-011 МП «Инструкция. Наборы калибровочные КНЭМС. Методика поверки», утвержденным ФГУП «ВНИИФТРИ» 16 марта 2018 г.

Основные средства поверки:

- калибратор многофункциональный Fluke 5720A, регистрационный номер 52495-13 в Федеральном информационном фонде;
- вольтметр универсальный В7-78/1, регистрационный номер 52147-12 в Федеральном информационном фонде.
- измеритель комплексных коэффициентов передачи «Обзор-103», регистрационный номер 29612-09 в Федеральном информационном фонде.
- генератор сигналов произвольной формы 33210A регистрационный номер 32993-09 в Федеральном информационном фонде;

– шумомер-виброметр, анализатор спектра ЭКОФИЗИКА-110A, регистрационный номер 48906-12 в Федеральном информационном фонде.

Допускается применение других средств поверки, обеспечивающих определение метрологических характеристик поверяемых наборов КНЭМС с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к наборам калибровочным КНЭМС

Набор калибровочный КНЭМС. Технические условия ТУ 26.51.43-001-12863479-2017

Изготовитель

Общество с ограниченной ответственностью Научно-производственное предприятие «Прорыв» (ООО НПП «Прорыв»)

ИНН 1001058862

Адрес: 185035, г. Петрозаводск, ул. Андропова, д. 10

Тел.: (8142) 78-62-19 Факс: (8142) 76-88-52 E-mail: info@proryvnpp.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Φ ГУП «ВНИИ Φ ТРИ»)

Адрес: 141570, Московская область, Солнечногорский район, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11

Телефон (факс): +7(495) 526-63-00

E-mail: office@vniiftri.ru

Аттестат аккредитации ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 11.05.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2018 г.