ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы программно-технические «Овация»

Назначение средства измерений

Комплексы программно-технические "Овация" (далее - комплексы) предназначены для измерений входных электрических сигналов в виде силы и напряжения постоянного тока, напряжения переменного тока и частоты, преобразования сигналов от термопреобразователей сопротивления, термопар, а также для воспроизведения сигналов силы и напряжения постоянного тока для управления исполнительными механизмами.

Описание средства измерений

Принцип действия ИК комплексов заключается в аналого-цифровом преобразовании входных сигналов. Аналого-цифровой преобразователь в модулях ввода преобразует входные аналоговые сигналы в цифровые коды, которые затем передаются через порт ввода/вывода и обрабатываются контроллерами комплекса. Цифро-аналоговое преобразование сигналов производится в модулях вывода комплекса. Воспроизведение выходных аналоговых сигналов силы и напряжения постоянного тока осуществляется за счет цифро-аналогового преобразования в модулях вывода цифровых кодов от контроллеров комплекса. Общее количество контроллеров комплекса — до 256 с максимально возможным числом измерительных каналов (модулей) ввода/вывода аналоговых сигналов на один контроллер — до 2048. Количество контроллеров и модулей ввода/вывода в конкретном образце комплекса определяется проектом.

Коммуникационные модули комплекса обеспечивают информационный обмен комплекса с другими подсистемами различного типа. Обмен цифровыми данными производится по стандартным промышленным протоколам. Это обеспечивает обмен данными без дополнительных преобразований и искажений значений параметров.

Конструктивно комплекс размещается в напольных металлических шкафах двустороннего обслуживания на базе сварного стального силового каркаса. Шкафы снабжены механическими замками для защиты от несанкционированного доступа. Замки закрываются ключами. Шкафы снабжены болтами защитного заземления. Модули ввода/вывода в шкафах посредством одноточечного крепления монтируются на стандартной DIN-рейке. Подвод кабелей выполняется снизу через специальный уплотняющий кабельный ввод. Шкафы содержат вентиляционные решетки с фильтрами и вентиляторы на обеих дверях В состав комплекса входят: - шкафы контроллеров (ШК), содержащие контроллеры и/или модули ввода/вывода, источники питания, сетевые коммутаторы;

- шкафы расширения (ШР), предназначенные для масштабирования, увеличения количества вводов-выводов шкафов контроллеров с целью подключения дополнительных сигналов от КИПиА, объектов управления, локальных систем управления;
- шкафы вспомогательные (ШВ), содержащие коммутаторы, маршрутизаторы, автоматы безопасности:
- автоматизированное рабочее место (APM) оператора с установленной технологической программой для визуализации результатов измерений и задания уровней воспроизводимых сигналов.

Для предотвращения несанкционированного доступа шкафы, в которых монтируются компоненты комплекса, снабжены механическими замками.

Общий вид компонентов комплекса «Овация» представлен на рисунках 1 - 4.

Механические замки

Рисунок 1 - Общий вид шкафа контроллеров (ШК)

Рисунок 3 - Общий вид шкафа вспомогательного (ШВ)

Рисунок 2 - Общий вид шкафа расширения (ШР)

Рисунок 4 - Автоматизированное рабочее место оператора (APM)

Пломбирование от несанкционированного доступа не предусмотрено.

Программное обеспечение

Программное обеспечение, предназначенное для управления работой модулей ввода/вывода аналоговых сигналов и представления измерительной информации по стандартным протоколам, не влияет на метрологические характеристики средства измерения (метрологические характеристики комплекса нормированы с учетом ПО). Программная защита ПО и результатов измерений реализована на основе системы паролей и разграничения прав доступа. Механическая защита ПО основана на использовании встроенного механического замка на дверях шкафов, в которых монтируются компоненты комплекса. Уровень защиты программного обеспечения "высокий" в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значения
Идентификационное наименование	Ovation
Номер версии (идентификационный номер)	Не ниже 3.5.1

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики каналов измерений/преобразований входных сигналов

Входной сигнал каналов	Диапазоны измерений/ преобразований	Пределы допускаемой основной приведенной погрешности g_{ir} доп, %	Пределы допускаемой приведенной погрешности в условиях эксплуатации,	Темпе- ра- турный коэф- фи- циент, %/ ⁰ C	Примечание
1	2	3	4	5	6
Сила	от 0 до 20 мА	±0,15	±0,24	±0,24 -	
постоян- ного тока	от 4 до 20 мА	±0,10			
	от -1 до +1 мА	±0,10			
	от -100 до +100 мВ				
Напряже-	от -250 до +250 мВ	±0,10	±0,24	-	
стоянного	от -1 до +1 В				
тока	от -5 до +5 В				
	от -10 до +10 В				
Напража	от 0 до 12 В (ампл)	±0,20	±1,00	-	В диапазоне частот от 0 до
Напряже- ние пере-	от 0 до 24 В (ампл)				частот от о до 20 кГц
менного тока	от 0 до ±12 В	±0,20	±1,00	-	Напряжение смещения входного сигнала

Продолжение таблицы 2

1	ие таолицы 2 2	3	4	5	6
	от 100 до 159,92 Ом (от 0 до +140 ⁰ C)	±0,27	-	0,001	Cu50, 50M, α =0,00428 $^{0}C^{-1}$ 3x-проводное подключение
Сигналы от термо- преобра- зователей	от 72,33 до 300,75 Ом (от -70 до +560 ⁰ C) от 71,91 до 303,95 Ом (от -70 до +560 ⁰ C)	±0,25	-	0,001	$Pt100,$ α =0,00385 $^{0}C^{-1}$ $100\Pi,$ α =0,00391 $^{0}C^{-1}$ $4x$ -проводное подключение
сопротив- ле-ния *)	от 72,33 до 300,75 Ом (от -70 до +560 °C) от 71,91 до 303,95 Ом (от -70 до +560 °C)	±0,27	-	0,001	$\begin{array}{l} Pt100, \\ \alpha=0,00385 \ ^{0}C^{-1} \\ 100\Pi, \\ \alpha=0,00391 \ ^{0}C^{-1} \\ 3x-проводное \\ подключение \end{array}$
	от 144,66 до 601,50 Ом (от 0 до +370 °C)	±0,30	-	0,001	Рt200, α=0,00385 ⁰ C ⁻¹ 4х-проводное подключение
	от -0,896 до 42,919 мВ (от -18 до +760 ⁰ C)	±0,15	±0,24	-	Ј (ТЖК)
	от -0,701 до 54,819 мВ (от -18 до +1370 °C)	±0,15	±0,24	-	K (TXA)
Сигналы	от-1,683 до 20,872 мВ (от -46 до +400 °C)	±0,15	±0,24	-	T (TMK)
от термо- пар * ⁾	от -1,039 до 76,373 мВ (от -18 до +1000 °C)	±0,15	±0,24	-	Е (ТХКн)
	от 2,017 до 11,850 мВ (от +260 до +1100 °C)	±0,15	±0,24	-	R (ТПП)
	от 3,259 до 10,757 мВ (от +400 до +1100 °C)	±0,15	±0,24	-	S (ТПП)
	от 0,787 до 5,780 мВ (от +400 до +1100 °C)	±0,15	±0,24	-	В (ТПР)
Частота	от 0,72 Гц до 5 кГц	0,0026	±0,0035	-	

Нормальные условия измерений:

Примечания:

- нормирующим значением при определении приведенной погрешности является

верхний предел диапазона измерений/преобразований сигналов силы постоянного тока, напряжения переменного тока, сигналов от термопреобразователей, сигналов частоты;

диапазон измерений/преобразований сигналов напряжения постоянного тока, сигналов от термопар (алгебраическая разность верхнего и нижнего пределов диапазона);

- пределы допускаемой погрешности преобразований сигналов от термопар приведены в таблице без учета погрешности канала компенсации температуры холодного спая.

⁻ температура окружающего воздуха, ⁰Cот +24 до +26

⁻ относительная влажность воздуха, %от 30 до 80

⁻ атмосферное давление, кПаот 84 до 106

^{*) -} с поддиапазонами, приведенными в Формуляре на конкретный образец комплекса;

Таблица 3 – Метрологические характеристики каналов воспроизведений выходных сигналов

Выходной сигнал ИК	Диапазоны воспроизведений	Пределы допускаемой основной приведенной погрешности $g_{\mu \kappa \text{доп}}$, %	Температур- ный коэффи циент, %/°C	Примечание
Сила постоянного	от 0 до 20	±0,10	0,0030	
тока, мА	от 4 до 20	±0,10	0,0025	
Напряжение постоянного тока, В	от 0 до 10	±0,10	0,0030	

Нормальные условия измерений:

- температура окружающего воздуха, ⁰C от +24 до +26
- относительная влажность воздуха, %от 30 до 80
- атмосферное давдение, кПаот 84 до 106

Примечания:

- нормирующим значением при определении приведенной погрешности является верхний предел диапазона выходного сигнала.

Таблица 4 – Основные технические характеристики

Наименование характеристики	Значение	
Напряжение питания переменного тока частотой 50 Гц, В	220 B	
Напряжение питания постоянного тока, В	220 B	
Мощность, потребляемая одним шкафом, В-А (Вт), не более	500	
Средний срок службы, лет	15	
Наработка на отказ, ч, не менее	20000	
Условия эксплуатации: - диапазон температур окружающего воздуха, °C:	от 0 до +60	
 - относительная влажность окружающего воздуха (при 25 °C), % (без конденсации), не более - диапазон атмосферного давления, кПа 	95 от 84 до 106,7	

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом и на дверцы шкафов в виде наклейки.

Комплектность средства измерений

Таблица 5 - Комплектность комплекса

Наименование	Обозначение	Количество
Комплекс программно-технический "Овация" (состав определяется заказом)		1 экз.
Руководство по эксплуатации	368043_2.00.61000-PЭ	1 экз.
Формуляр	368043_2.00.61000.ФО	1 экз.
Методика поверки	МП2064-0128-2018	1 экз.
Технологическая программа (на диске)	ПО "Diagnostics"	1 экз.

Поверка

осуществляется по документу МП 2064-0128-2018 "ГСИ. Комплексы программно-технические Овация. Методика поверки", утвержденному ФГУП "ВНИИМ им. Д.И. Менделеева" 18 мая 2018 г.

Основные средства поверки:

- калибратор универсальный Н4-17 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 46628-11);
- магазин сопротивления Р4831 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 6332-77);
- вольтметр универсальный цифровой GDM-78261 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 52669-13);
- генератор сигналов специальной формы AFG72125 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 41694-09);
- частотомер электронно-счетный Ч3-63 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 9084-83).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) в Формуляр.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к комплексам программно-техническим "Овация"

ГОСТ 8.027-2001 ГСИ. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы

Приказ Росстандарта от 15.02.2016 г. №146. "Об утверждении Государственной поверочной схемы для средств измерений электрического сопротивления"

ГОСТ 8.022-91 ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1\cdot 10^{-16}\,\mathrm{дo}\ 30\ \mathrm{A}$

ГОСТ 8.129-2013 ГСИ. Государственная поверочная схема для средств измерений времени и частоты

Технические условия 26.51.43.120-001-45030398-2017 ТУ "Комплексы программнотехнические "Овация"

Изготовитель

Общество с ограниченной ответственностью "Эмерсон" (ООО "Эмерсон")

ИНН 7705130530

Адрес: 115054, г. Москва, Дубинская ул., д. 53, строение 5

Телефон: (495) 995-95-59 Факс: (495) 424-88-50

E-mail: Info.Ru@Emerson.com

Испытательный центр

Федеральное государственное унитарное предприятие "Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева"

Адрес:190005, г. С.-Петербург, Московский пр. 19

Телефон: (812) 251-76-01 Факс: (812) 713-01-14 E-mail: info@vniim.ru

Аттестат аккредитации Φ ГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____2018 г.