ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) КОО «МИЛЛГРИН ЛИМИТЕД»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) КОО «МИЛЛГРИН ЛИМИТЕД» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее – ТТ), трансформаторы напряжения (далее – ТН) и счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-3.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее – ПО) ПК «Энергосфера», устройство синхронизации времени УСВ-3 (далее – УСВ-3).

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «ATC», АО «СО ЕЭС».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на сервер БД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу ТСР/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ-3, принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). Корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и ИВК на величину более ± 2 с, но не чаще одного раза в сутки. Корректировка часов ИВК выполняется автоматически, от УСВ-3.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика электроэнергии, отражаются в его журнале событий.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов указанных устройств, отражаются в журнале событий сервера.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии не ниже 7.1, в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Метрологические значимые модули ПО

Tuosinga i Welposiotii leekile siia ilimbie mogysii	1110		
Идентификационные признаки	Значение		
Идентификационное наименование ПО	ПК «Энергосфера»		
	Библиотека pso_metr.dll		
Номер версии (идентификационный номер) ПО	1.1.1.1		
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

	Измерительные компоненты						Метрологические характеристики ИК	
Номер ИК	Наименование объекта	TT	ТН	Счётчик	УСВ	Вид электроэне ргии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	РП-16160 10 кВ, РУ-10 кВ, 1 сш 10 кВ, КЛ-10 кВ РП-16160 - ТП- 28105 с.1	ТПЛ-10-2 Кл. т. 0,2S 400/5	ЗНОЛ.06 Кл. т. 0,5 10000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5		активная	±0,8 ±1,8	±1,6 ±2,8
2	РП-16160 10 кВ, РУ-10 кВ, 2 сш 10 кВ, КЛ-10 кВ РП-16160 - ТП- 28105 с.2	ТПЛ-10-2 Кл. т. 0,2S 400/5	ЗНОЛ.06 Кл. т. 0,5 10000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5		активная	±0,8 ±1,8	±1,6 ±2,8
3	ТП-10612 10/0,4 кВ ВегаЛайн, ввод 0,4 кВ Т-1	ASK 123.3 Кл. т. 0,5 1500/5	-	Меркурий 230 ART-03 PQRSIDN Кл. т. 0,5S/1,0	УСВ-3	активная	±1,0 ±2,4	±3,2 ±5,6
4	ТП-10612 10/0,4 кВ ВегаЛайн, ввод 0,4 кВ Т-2	ASK 123.3 Кл. т. 0,5 1500/5	-	Меркурий 230 ART-03 PQRSIDN Кл. т. 0,5S/1,0		активная	±1,0 ±2,4	±3,2 ±5,6
5	ТП-10603 10/0,4 кВ ВегаЛайн, ввод 0,4 кВ Т-1	СТ6/1500 Кл. т. 0,5 1500/5	-	Меркурий 230 ART-03 PQRSIDN Кл. т. 0,5S/1,0		активная	±1,0 ±2,4	±3,2 ±5,6
6	ТП-10603 10/0,4 кВ ВегаЛайн, ввод 0,4 кВ Т-2	СТ6/1500 Кл. т. 0,5 1500/5	-	Меркурий 230 ART-03 PQRSIDN Кл. т. 0,5S/1,0		активная реактивная	±1,0 ±2,4	±3,2 ±5,6

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
	ТП-10608 10/0,4	TA60R		CЭT-4TM.03M.09		активная	±1,0	±3,2
7	кВ Спасатель,	Кл. т. 0,5	-	Кл. т. 0,5S/1,0	УСВ-3			
	ввод 0,4 кВ Т-1	600/5		KJI. T. U,35/1,0		реактивная	$\pm 2,4$	$\pm 5,6$
Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с						±	5	

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд, I=0.02(0.05) $I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 7 от 0 до плюс 40 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков и УСВ-3 на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящимописанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК	
Наименование характеристики	Значение
Количество измерительных каналов	7
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- Tok, $\%$ ot I_{hom}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2 до 120
- коэффициент мощности	от 0,5 $_{\text{инд}}$. до 0,8 $_{\text{емк}}$.
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °С:	от -40 до +65
- температура окружающей среды в месте расположения	
сервера, °С	от +10 до +60
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчика СЭТ-4ТМ.03М	165000
для электросчетчика Меркурий 230 ART-03 PQRSIDN	150000
для электросчетчика СЭТ-4ТМ.03М.09	140000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	114
- при отключении питания, лет, не менее	40
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике с фиксацией даты и времени до и после коррекции часов счетчика;
- журнал ИВК:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчиках, сервере с фиксацией даты и времени до и после коррекции часов указанных устройств.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) КОО «МИЛЛГРИН ЛИМИТЕД» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег №	Количество, шт.
Трансформатор тока	ТПЛ-10-2	47958-11	4
Трансформатор тока	ASK 123.3	31089-06	6
Трансформатор тока	CT6/1500	26070-03	6
Трансформатор тока	TA60R	35626-07	3
Трансформатор напряжения	3НОЛ.06	46738-11	6
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	36697-12	2
Счётчик электрической энергии многофункциональный	Меркурий 230 ART-03 PQRSIDN	23345-07	4

Продолжение таблицы 4

Наименование	Тип	Рег №	Количество, шт.
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.09	36697-17	1
Устройство синхронизации времени	УСВ-3	64242-16	1
Программное обеспечение	ПК «Энергосфера»	-	1
Методика поверки	МП 028-2018	-	1
Паспорт-Формуляр	066-18.ПФ	-	1

Поверка

осуществляется по документу МП 028-2018 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) КОО «МИЛЛГРИН ЛИМИТЕД». Методика поверки», утвержденному ООО «Спецэнегопроект» 20 июля 2018 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ИСМ» «04» мая 2012 г.:
- счетчиков Меркурий 230 ART-03 PQRSIDN по документу «Методика поверки» АВЛГ.411152.021 РЭ1, согласованному с ГЦИ СИ ФГУ «Нижегородский ЦСМ» «21» мая 2007 г.;
- счетчиков СЭТ-4ТМ.03М.09 по документу «Счетчик электрической энергии трехфазный электронный МИР С-03. Методика поверки» М08.112.00.000 МП, согласованному с ГЦИ СИ Φ ГУП «ВНИИМС» в 2009 г.;
- УСВ-3 по документу РТ-МП-3124-441-2016 «Устройства синхронизации времени УСВ-3. Методика поверки», утвержденному ФБУ «Ростест-Москва» 23.03.2016 году;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 27008-04;
- термогигрометр CENTER (мод.315): диапазон измерений температуры от минус 20 до плюс 60° С, дискретность $0,1^{\circ}$ С; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

«Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) КОО «МИЛЛГРИН ЛИМИТЕД», аттестованной ООО «Спецэнергопроект», аттестат об аккредитации № RA.RU.312236 от 20.07.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) КОО «МИЛЛГРИН ЛИМИТЕД»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЕЭС-Гарант» (ООО «ЕЭС-Гарант») ИНН 5024104671

Юридический адрес: 143421, Московская область, Красногорский район, 26 км автодороги «Балтия», комплекс ООО «ВегаЛайн», строение 3

Адрес: 620075, Свердловская область, г. Екатеринбург, ул. Кузнечная, д. 92

Телефон: (495) 980-59-00 Факс: (495) 980-59-08

Заявитель

Общество с ограниченной ответственностью «Стройэнергетика» (ООО «Стройэнергетика»)

Адрес: 129337, г. Москва, ул. Красная Сосна, д. 20, стр. 1, комн. 4

Телефон: (926) 786-90-40

E-mail: Stroyenergetika@gmail.com

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Юридический адрес: 111024, г. Москва, ул. Авиамоторная, д. 50, 2, пом. XIV, комн.11

Адрес: 119119, г. Москва, Ленинский пр. д.42, корп.6, этаж 2, ком. 12

Телефон: (495) 410-28-81

E-mail: gd.spetcenergo@gmail.com

Аттестат аккредитации ООО «Спецэнергопроект» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312426 от 30.01.2018 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

4	A.I	3.	Кy	ле	ш	OB

М.п. «____ » _____ 2018 г.