ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Компараторы СА507

Назначение средства измерений

Компараторы CA507 предназначены для измерений величин, которые используются при определении метрологических характеристик трансформаторов тока и напряжения или других средств измерительной техники при их поверке и калибровке.

Описание средства измерений

Принцип действия компараторов основан на использовании дифференциального метода определения погрешности трансформаторов путем сравнения метрологических характеристик рабочего трансформатора с метрологическими характеристиками эталонного трансформатора. Процесс измерения осуществляется в автоматизированном режиме.

Конструктивно компараторы выполнены в виде блока прямоугольной формы, на передней панели которых расположены: мембранная клавиатура, индикатор для вывода информации, разъем для подключения кабеля связи с компьютером и выключатель. На задней панели компараторов расположены зажимы для подключения измерительных кабелей.

Внешний вид компаратора СА507 и схема пломбировки от несанкционированного доступа представлены на рисунке 1.

В комплект поставки компараторов может входить источник тока CA3600, который состоит из четырех блоков прямоугольной формы: блока коммутации БК и трех трансформаторов силовых TC1, TC2, TC3. Внешний вид представлен на рисунке 2.

Рисунок 1 – Общий вид компаратора и схема пломбировки

Рисунок 2 – Общий вид источника тока САЗ600

Программное обеспечение

Программное обеспечение (ПО) компараторов СА507 состоит из двух частей: встроенного и внешнего ПО.

Встроенное ПО устанавливается в энергонезависимую память компаратора в производственном цикле на заводе-изготовителе и в процессе эксплуатации, в том числе и по каналам обмена информацией, изменению не подлежит.

Защита ПО обеспечивается пломбированием корпуса компаратора и отсутствием доступа к изменению ПО без вскрытия корпуса. Дополнительная защита ПО не требуется.

Внешнее ПО не позволяет вносить изменения во встроенное ПО.

Уровень защиты программного обеспечения «высокий» в соответствии с Р.50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения

тионици т тидентификационные данные программиото обеспетения		
Идентификационные данные (признаки)	Значение	
Встроенное		
Идентификационное наименование ПО	CA507_LPC.hex	
Номер версии ПО	не ниже V1.93	
Внешнее		
Идентификационное наименование ПО	setup_CA640_PC_v3.XX.exe	
Номер версии ПО	не ниже V3.11	

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение	
1	2	
Диапазон измерений относительной разности вторичных напряжений двух трансформаторов напряжений (ТН), %	от -15 до +15	
Диапазон измерений разности фаз двух ТН, '	от -300 до +300	
Диапазон измерений относительной разности сил вторичных токов двух трансформаторов тока (TT), %	от -15 до +15	
Диапазон измерений разности фаз двух ТТ, '	от -300 до +300	
Диапазон измерений активной мощности нагрузки во вторичной цепи ТН, при напряжении на нагрузке от 6 до 240 В и силе тока от 0 до 5 А, Вт	от 0 до 500	
Диапазон измерений реактивной мощности нагрузки во вторичной цепи ТН, при напряжении на нагрузке от 6 до 240 В и силе тока от 0 до 5 А, В·А	от 0 до 500	
Диапазон измерений активной мощности нагрузки во вторичной цепи ТТ, при напряжении на нагрузке от 0 до 100 В и силе тока в диапазоне от 0,01 до 7,5 A, Вт	от 0 до 500	
Диапазон измерений реактивной мощности нагрузки во вторичной цепи ТТ, при напряжении на нагрузке от 0 до 100 В и силе тока от 0,01 до 7,5 A, B·A	от 0 до 500	
Диапазон измерений активного и реактивного сопротивления нагрузки во вторичной цепи ТТ, при напряжение от 0 до 100 В и силе тока от 0,01 до 7,5 A, Ом	от 0 до 200	
Диапазон измерений активной и реактивной проводимости нагрузки во вторичной цепи ТН, при напряжении на нагрузке от 6 до 240 В и силе тока в пределах от 0 до 5 А, См	от 0 до 5·10⁻²	
Диапазон измерений силы тока во вторичной цепи эталонного ТТ частоты от 48 до 62 Гц, А	от 0,01 до 7,5	
Диапазон измерений напряжения во вторичной цепи эталонного ТН частоты от 48 до 62 Гц, В	от 0,1 до 240,0	
Диапазон измерений сила тока в цепях, питаемых от промышленной сети частоты от 48 до 62 Гц, А	от 0,05 А до 5,0	
Диапазон измерений напряжения в цепях, питаемых от промышленной сети частоты 48 до 62 Гц, В	от 0,1 до 500,0	

Продолжение таблицы 2

Продолжение таблицы 2	
1	2
Пределы допускаемой основной абсолютной погрешности при измерении относительной разности вторичных напряжений двух ТН $\Delta_{\rm fDU}$, %, в диапазоне вторичных напряжений: — от 20 до 240 В — от 6 до 20 В	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Пределы допускаемой основной абсолютной погрешности при измерении разности фаз вторичных напряжений двух ТН δ_{DU} , ', в диапазоне вторичных напряжений: – от 20 до 240 В – от 6 до 20 В	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Пределы допускаемой основной абсолютной погрешности при измерении относительной разности сил вторичных токов двух TT f_{DI} , при их равных номинальных вторичных токов: — от 1 до 7,5 A — от 0,05 до 1 A — от 0,01 до 0,05 A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Пределы допускаемой основной абсолютной погрешности при измерении относительной разности сил вторичных токов двух TT Δ_{fDI} , при отношении их номинальных вторичных токов как 5 к 1, %, в диапазоне сил вторичных токов: — TT 9 от 0,5 до 7,5 A, TT x от 0,1 до 1,5 A — TT 9 от 0,05 до 0,05 A, TT x от 0,01 до 0,1 A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Пределы допускаемой основной абсолютной погрешности при измерении разности фаз вторичных токов двух TT δ_{DI} , при их равных номинальных вторичных токах, $'$, в диапазоне сил вторичных токов: — от 0.25 до 7.5 A — от 0.01 до 0.25 A	
Пределы допускаемой основной абсолютной погрешности при измерении разности фаз вторичных токов двух TT $\Delta_{\delta DI}$, при отношении их номинальных вторичных токов как 5 к 1, $'$, в диапазоне сил вторичных токов: — от 0,25 до 7,5 A — от 0,05 до 0,25 A	$\begin{array}{c c} \pm (0,005 \cdot \mid \delta_{DI} \mid +0,1+0,7 \cdot \mid f_{DI}/f_{DImax} \mid) \\ \pm (0,005 \cdot \mid \delta_{D} \mid +0,6+0,7 \cdot \mid f_{DI}/f_{DImax} \mid) \end{array}$

Продолжение таблицы 2

Пределы допускаемой основной абсолютной погрешности при измерении активной(реактивной) мощности нагрузки во вторичной цепи ТН, Вт (В·А), в диапазоне вторичных напряжений:	
– от 50 до 240 B	$\pm (0.005 \times \sqrt{P^2 + Q^2} + U_{2 \text{HOM}}^2 \times 10^{-7})$
– от 30 до 50 B	$\pm (0.005 \times \sqrt{P^2 + Q^2} + U_{2\text{HOM}}^2 \times 2 \times 10^{-7})$
– от 6 до 30 B	$\pm (0.005 \times \sqrt{P^2 + Q^2} + U_{2\text{HOM}}^2 \times 10^{-6})$
Пределы допускаемой основной абсолютной погрешности при измерении активной (реактивной) мощности нагрузки во вторичной цепи ТТ, Вт (В·А), в диапазоне сил вторичных токов: — от 0,01 до 7,5 А	$\pm (0.005 \times \sqrt{P^2 + Q^2} + I_{2\text{HOM}}^2 \times 0.0003)$
Пределы допускаемых дополнительных погрешностей от изменения температуры окружающей среды в диапазоне рабочих температур на каждые 10 °C, в долях от пределов допускаемой основной погрешности	1
Нормальные условия измерений: – температура окружающей среды, °C – относительная влажность, %, при +25 °C	от +10 до +30 80

Примечания:

 $f_{DU}-$ числовое значение результата измерения относительной разности вторичных напряжений двух TH, выраженного в процентах;

 $\delta_{DU}-$ числовое значение результата измерения разности фаз вторичных напряжений двух ТН, выраженного в минутах;

 $\delta_{DU~max}$ — числовое значение верхней границы диапазона измерений разности фаз вторичных напряжений двух TH, равное 300 ';

 $f_{DU\,max}$ — числовое значение верхней границы диапазона измерений относительной разности вторичных напряжений двух ТН, равное 15 %;

 $f_{DI}-$ числовое значение результата измерения относительной разности сил вторичных токов двух TT, выраженного в процентах;

 δ_{DI} — числовое значение результата измерения разности фаз вторичных токов двух TT, выраженного в минутах;

 $\delta_{DI\ max}$ — числовое значение верхней границы диапазона измерений разности фаз вторичных токов двух TT, равной 300 ';

 $f_{DI\ max}$ — числовое значение верхней границы диапазона измерений относительной разности сил вторичных токов двух TT, равной 15 %;

 $U_{2\text{ном}}$ – числовое значение номинального вторичного напряжения эталонного ТН, выраженного в вольтах;

Р – числовое значение результата измерения активной мощности, выраженного в ваттах;

Q – числовое значение результата измерения реактивной мощности, выраженного в вольт-амперах;

 $I_{2\text{ном}}$ — числовое значение номинального значения силы вторичного тока TT, используемого в качестве эталонного, выраженного в амперах;

Р – числовое значение результата измерения активной мощности, выраженного в ваттах;

Q – числовое значение результата измерения реактивной мощности, выраженного в вольт-амперах.

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение	
Параметры электрического питания:		
 напряжение переменного тока, В 	от 198 до 242	
 – частота переменного тока, Гц 	от 49 до 51	
Потребляемая мощность, В•А, не более		
– компаратора	15	
источника тока CA3600	20000	
Габаритные размеры составных частей трансформаторов		
(длина ширина высота), мм, не более:		
– компаратора	240′ 130′ 300	
 – блока коммутаций БК 	480´260´180	
трансформатора силового TC1	300´200´165	
 трансформатора силового TC2 	300′ 200′ 165	
трансформатора силового TC3	352´210´188	
Масса, кг, не более:		
– компаратора	5	
 – блока коммутаций БК 	20	
трансформатора силового TC1	17	
 трансформатора силового TC2 	17	
трансформатора силового TC3	19	
Условия эксплуатации:		
– температура окружающего воздуха, °С	от 0 до 40	
– относительная влажность при +25°C, %, до	80	
Средний срок службы, лет, не менее	9	
Средняя наработка на отказ, ч, не менее	13000	

Знак утверждения типа

наносится типографским способом с нанесением защитного полимерного покрытия на переднюю панель компаратора и (или) на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность компаратора СА507

Наименование	Обозначение	Количество
Компаратор СА507	ПДРМ.411439.001	1 шт.
Мера отношения токов МОТ-2	ПДРМ.411639.002	1 шт.
Мера емкости МЕ-1	ПДРМ.411644.003	1 шт.
Источник тока CA3600 Блок коммутации	ПДРМ.468349.010	
Источник тока CA3600. Трансформатор силовой TC1	ПДРМ.671221.004	Наличие определяется при заказе
Источник тока CA3600. Трансформатор силовой TC2	ПДРМ.671221.005	
Источник тока CA3600. Трансформатор силовой TC3	ПДРМ.671221.006	
Кабель измерительный КИ (U)	ПДРМ.685611.008	1 шт.
Кабель измерительный КИ (I)	ПДРМ.685611.009	1 шт.

Продолжение таблицы 4

Наименование	Обозначение	Количество
Набор тоководов и кабелей силовых		Наличие и
		состав
		определяется
		при заказе
Руководство по эксплуатации.	ПДРМ.411439.001 РЭ	1 шт.
Часть 1. Техническая эксплуатация	пді мі.411439.001 1 Э	1 ш1.
Руководство по эксплуатации. Часть 2.	ПДРМ.411439.001 РЭ1	1 экз.
Методика поверки	11Д1 141.411439.001 1 Э1	
Руководство по эксплуатации. Часть 3.		
Работа компаратора при управлении от	ПДРМ.411439.001 РЭ2	1 экз.
ПК		
Паспорт	ПДРМ.411439.001 ПС	1экз.
Сумка 507	ПДРМ.323382.007	1 шт.

Поверка

осуществляется по документу ПДРМ.411439.001 РЭ1 «Руководство по эксплуатации. Часть 2. Методика поверки», утверждённому ФБУ «УРАЛТЕСТ» 28.02.2017 г.

Основные средства поверки:

Вольтметр В3-60, регистрационный номер в Федеральном информационном фонде № 9671-84;

Меры сопротивления Р321, регистрационный номер в Федеральном информационном фонде № 1162-58;

Мост переменного тока высоковольтный ЦЕ5002, регистрационный номер в Федеральном информационном фонде № 11413-88;

Магазин сопротивлений Р4834, регистрационный номер в Федеральном информационном фонде № 11326-90;

Частотомер Ч3-36/1, регистрационный номер в Федеральном информационном фонде № 3336-72:

Меры емкости Р597, регистрационный номер в Федеральном информационном фонде № 2684-70;

Генератор сигналов низкочастотный Г3-123, регистрационный номер в Федеральном информационном фонде № 11189-88;

Магазин емкости Р5025, регистрационный номер в Федеральном информационном фонде № 5395-76;

Нуль-индикатор Φ 5046/1, регистрационный номер в Федеральном информационном фонде № 3353-72;

Амперметр Д553, регистрационный номер в Федеральном информационном фонде № 1622-62.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к компараторам CA507

ГОСТ 8.550-86 ГСИ. Государственный специальный эталон и государственная поверочная схема для средств измерений коэффициента и угла масштабного преобразования синусоидального тока

ГОСТ Р 8.746-2011 ГСИ. Государственная поверочная схема для средств измерений коэффициента масштабного преобразования и угла фазового сдвига электрического напряжения переменного тока промышленной частоты в диапазоне от $0.1/\sqrt{3}$ до $750/\sqrt{3}$ кВ

Приложение к приказу Федерального агентства по техническому регулированию и метрологии от 15 февраля 2016 г. N 146. Государственная поверочная схема для средств измерений электрического сопротивления

ГОСТ 8.216-2011 ГСИ. Трансформаторы напряжения. Методика поверки ГОСТ 8.217-2003 ГСИ. Трансформаторы тока. Методика поверки ТУ 422260-003-29304028-2016 «Компаратор CA507. Технические условия»

Изготовитель

Общество с ограниченной ответственностью «ОЛТЕСТ» (ООО «ОЛТЕСТ»)

ИНН 7705559778

Адрес: 115035, г. Москва, ул. Садовническая 72, стр. 1, оф. 6

Телефон (факс): 8 (499) 346-68-89

E-mail: lvc@oltest.com.ua

Испытательный центр

Федеральное бюджетное учреждение "Государственный региональный центр стандартизации, метрологии и испытаний в Свердловской области"

Адрес: 620990, Свердловская область, г. Екатеринбург, ул. Красноармейская, д. 2а

Телефон: 8 (343) 350-25-83 Факс: 8 (343) 350-40-81 E-mail: uraltest@uraltest.ru

Аттестат аккредитации ФБУ «УРАЛТЕСТ» по проведению испытаний средств измерений в целях утверждения типа № 30058-13 от 21.10.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « » 2018 г.