ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Кондитерский концерн Черногорский»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Кондитерский концерн Черногорский» (далее - АИИС КУЭ) предназначена для измерения активной и реактивной электрической энергии.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ выполняет следующие функции:

- выполнение измерений 30-минутных приращений активной и реактивной электроэнергии, характеризующих оборот товарной продукции;
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к времени в шкале UTC(SU) результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
 - хранение данных об измеренных величинах в базе данных на глубину не менее 3,5 лет;
 - обеспечение резервирования баз данных на внешних носителях информации;
- разграничение доступа к базам данных для разных групп пользователей и ведение журнала событий;
- подготовка данных в XML формате для их передачи по электронной почте внешним организациям;
- предоставление контрольного доступа к результатам измерений, данным о состоянии объектов и средств измерений по запросу со стороны внешних систем;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне;
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ ;
 - конфигурирование и настройку параметров АИИС КУЭ;
 - ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ имеет двухуровневую структуру:

- 1-й уровень информационно-измерительные комплексы точек измерений (ИИК ТИ);
- 2-й уровень измерительно-вычислительный комплекс (ИВК).

ИИК ТИ включают в себя:

- трансформаторы тока (ТТ) и их вторичные цепи;
- трансформаторы напряжения (ТН) и их вторичные цепи:
- счётчики электроэнергии.

TT и TH, входящие в состав ИИК ТИ, выполняют функции масштабного преобразования тока и напряжения.

Мгновенные значения аналоговых сигналов тока и напряжения преобразуются счетчиками электрической энергии АИИС КУЭ в цифровой код. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения мощности, вычисление активной мощности осуществляется путем интегрирования на временном интервале 20 мс мгновенных значений электрической мощности; полной мощности путем перемножения среднеквадратичных значений тока и фазного напряжения и реактивной мощности из измеренных значений активной и полной мощности. Вычисленные значения мощности преобразуются в частоту следования внутренних импульсов, число которых подсчитывается на интервале времени 30 минут и сохраняется во внутренних регистрах счетчика вместе с временным интервалом времени в шкале UTC (SU).

ИВК АИИС КУЭ расположен в АО «Новосибирскэнергосбыт», включает в себя сервер сбора данных, сервер баз данных, автоматизированные рабочие места (APM), связующие и вспомогательные компоненты.

ИВК выполняет следующие функции:

- сбор, первичную обработку и хранение результатов измерений и служебной информации ИИК;
 - занесение результатов измерений и их хранение в базе данных ИВК;
 - пересчет результатов измерений с учетом коэффициентов трансформации ТТ и ТН;
 - визуальный просмотр результатов измерений из базы данных;
- передачу результатов измерений во внешние системы, в том числе в AO «ATC», филиал AO «CO EЭС» Хакасское РДУ, другим субъектам оптового рынка по протоколу SMTP (спецификация RFC 821) в формате XML 80020, 80030.
 - ведение журнала событий ИВК.

Информационные каналы связи в АИИС КУЭ построены следующим образом:

- посредством интерфейса RS-485 для передачи данных от ИИК ТИ на уровне ИИК;
- посредством радиоканала стандарта GSM/GPRS с использованием коммуникатора С-1.02 для передачи данных от ИИК в ИВК;
- посредством глобальной сети передачи данных Интернет для передачи данных с уровня ИВК внешним системам.

ИИК ТИ, ИВК, устройства коммуникации и каналы связи образуют измерительные каналы (ИК).

АИИС КУЭ включает в себя систему обеспечения единого времени (СОЕВ) на базе устройства синхронизации времени УСВ-2 (рег. №41681-09). Система обеспечения единого времени АИИС КУЭ работает следующим образом. Устройство синхронизации времени УСВ-2 формирует шкалу времени UTC (SU) путем обработки сигналов точного времени системы GPS и передает её в ИВК. ИВК получает шкалу времени в постоянном режиме с помощью специализированной утилиты и при каждом опросе счетчиков вычисляет поправку времени часов счетчиков. И если поправка превышает величину ±2 с, ИВК формирует команду на синхронизацию счетчика. Счетчики типа Меркурий 234 допускают синхронизацию времени не чаще 1 раза в сутки.

Перечень ИК и измерительных компонентов в составе ИИК ТИ приведен в таблице 1.

Таблица 1 – Перечень ИК и измерительных компонентов в составе ИИК ТИ

	Пионотноромо	Состав	Состав первого уровня АИИС КУЭ		
№ИК	Диспетчерское наименование ИК	Трансформатор тока	Трансформатор	Счётчик электрической	
			напряжения	энергии	
1	2	3	4	5	
1	ПС 110 кВ №29 «Черногорская- городская», РУ-10 кВ, 1 с.ш. 10 кВ, яч.17	ТЛМ-10-2УЗ кл. т. 0,5 Ктт = 200/5 Рег. №2473-69	НТМИ-10-66У3 кл. т. 0,5 Ктн = 10000/100 Рег. №831-69	Меркурий 234, мод. ARTM2-00 PB.G кл. т. 0,5S/1 Рег. №48266-11	
2	ПС 110 кВ №29 «Черногорская- городская», РУ-10 кВ, 2 с.ш. 10 кВ, яч.16	ТЛК-10-6УЗ кл. т. 0,5 Ктт = 200/5 Рег. №9143-83	НТМИ-10-66У3 кл. т. 0,5 Ктн = 10000/100 Рег. №831-69	Меркурий 234, мод. ARTM2-00 PB.G кл. т. 0,5S/1 Рег. №48266-11	

Пломбирование АИИС КУЭ не предусмотрено.

Программное обеспечение

В ИВК используется программное обеспечение «Энергосфера» из состава «Комплексы программно-технические измерительные ЭКОМ» (ПТК «ЭКОМ», Г. р. № 19542-05, разработка ООО "НПФ "Прософт-Е", г. Екатеринбург).

Идентификационные признаки метрологически значимой части ПО АИИС КУЭ приведены в таблице 2.

Таблица 2 – Идентификационные признаки метрологически значимой части программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование программного обеспечения	pso_metr.dll
Номер версии (идентификационный номер) программного обеспечения	1.1.1.1
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму MD5)	cbeb6f6ca69318bed976e08a2bb7814b

Программное обеспечение имеет уровень защиты от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014 – «средний».

Метрологические и технические характеристики

Таблица 3 - Метрологические характеристики

І, % от Іном	Коэффициент	ИК № 1, 2		
1, % OT IHOM	мощности	$\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$, %	$\delta_{\mathrm{W}}{}^{\mathrm{A}}$, %	δ _W ^P , %
5	0,5	±5,5	±5,7	±4,0
5	0,8	±3,0	±3,4	±5,3
5	0,865	±2,7	±3,1	±6,2
5	1	±1,8	±2,1	-
20	0,5	±3,0	±3,3	±3,2
20	0,8	±1,7	±2,2	±3,7
20	0,865	±1,5	±2,1	±4,1
20	1	±1,2	±1,5	-
100, 120	0,5	±2,3	±2,7	±3,1
100, 120	0,8	±1,4	±2,0	±3,4
100, 120	0,865	±1,2	±1,9	±3,6
100, 120	1	±1,0	±1,4	-

Пределы допускаемых значений поправки часов, входящих в ${\rm COEB}$ относительно шкалы времени UTC, $\pm\,5$ с

Примечание

1.В таблице использованы обозначения:

 $\delta_{Wo}{}^{A}$ – доверительные границы допускаемой основной погрешности при измерении активной электрической энергии при вероятности P=0,95;

 δ_W^A - доверительные границы допускаемой погрешности при измерении активной электрической энергии в рабочих условиях при вероятности P=0.95;

 δ_W^P - доверительные границы допускаемой погрешности при измерении активной электрической энергии в рабочих условиях при вероятности P=0,95.

Таблица 4 – Технические характеристики АИИС КУЭ

Характеристика	Значение		
Количество измерительных каналов	2		
Период измерений активной и реактивной средней электрической	30		
мощности и приращений электрической энергии, минут			
Период сбора данных со счетчиков электрической энергии, минут	30		
Формирование XML-файла для передачи внешним системам	автоматическое		
Формирование базы данных с результатами измерений с указанием	автоматическое		
времени проведения измерений и времени поступления результатов			
измерений в базу данных			
Глубина хранения результатов измерений в базе данных, не менее, лет	3,5		
Ведение журналов событий ИВК и ИИК ТИ	автоматическое		
Рабочие условия применения компонентов АИИС КУЭ:			
- температура окружающего воздуха (кроме ТТ и ТН), °С	от +0 до +40		
- температура окружающего воздуха (для ТТ и ТН), °С	от -40 до +40		
- частота сети, Гц	от 49,5 до 50,5		
- напряжение сети питания, В	от 198 до 242		
- индукция внешнего магнитного поля, мТл	не более 0,05		
Допускаемые значения информативных параметров:			
- Tok, $\%$ ot I_{hom}	от 5 до 120		
- напряжение, % от U _{ном}	от 90 до 110		
- коэффициент мощности cos j	0,5 инд. $-1,0-0,8$		
	емк.		

Знак утверждения типа

Знак утверждения типа наносится на титульный лист формуляра НЭС.АСКУЭ.032016.1-ФО «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Кондитерский концерн Черногорский». Формуляр».

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 5.

Таблица 5 – Комплектность АИИС КУЭ

Наименование	Обозначение	Кол-во,
		шт.
Трансформаторы тока	ТЛК-10-6УЗ	2
Трансформаторы тока	ТЛМ-10-2У3	2
Трансформаторы напряжения	НТМИ-10-66У3	2
Устройство синхронизации времени	УСВ-2	1
Счетчик электрической энергии	Меркурий 234,	2
	мод. ARTM2-00 PB.G	
Система автоматизированная информационно-	НЭС.АСКУЭ.062018.1-	1
измерительная коммерческого учета электроэнергии	ФО	
ООО «Кондитерский концерн Черногорский». Формуляр		
Система автоматизированная информационно-	МП-146-	1
измерительная коммерческого учета электроэнергии	RA.RU.310556-2018	
ООО «Кондитерский концерн Черногорский». Методика		
поверки		

Поверка

осуществляется по документу МП-146-RA.RU.310556-2018 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Кондитерский концерн Черногорский». Методика поверки», утвержденному ФГУП «СНИИМ» 22 июня 2018 г.

Основные средства поверки:

- государственный первичный эталон единиц времени, частоты и национальной шкалы времени ГЭТ 1-2012;
 - TT πο ΓΟCT 8.217-2003;
 - TH πο ΓΟCT 8.216-2011;
- счетчиков электрической энергии Меркурий 234 в соответствии с документом «Счетчики электрической энергии статические трехфазные «Меркурий 234». Руководство по эксплуатации. Приложение Г. Методика поверки. АВЛГ.411152.033 РЭ1», утвержденной руководителем ГЦИ СИ ФБУ «Нижегородский ЦСМ» 01 сентября 2011 г.;
- устройства синхронизации времени УСВ-2 в соответствии с документом «Устройства синхронизации времени УСВ-2. Методика поверки ВЛСТ 234.00.001И1», утвержденным ФГУП «ВНИИФТРИ» 12 мая 2010 г.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик ИС с требуемой точностью.

Знак поверки наносятся на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Кондитерский концерн Черногорский». Свидетельство об аттестации методики измерений №388-RA.RU.311735-2018 от «14» июня 2018 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Кондитерский концерн Черногорский»

ГОСТ Р 8.596-2002. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «Новосибирскэнергосбыт» (АО «Новосибирскэнергосбыт»)

ИНН 5407025576

Адрес: 630099, г. Новосибирск, ул. Орджоникидзе, д. 32

Телефон: +7 (383) 229-89-89 Факс: +7 (383) 201-20-79 E-mail: info@nskes.ru

Web-сайт: https://www.nskes.ru/

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии»

(ФГУП «СНИИМ»)

Адрес: 630004, г. Новосибирск, проспект Димитрова, д. 4

Телефон: +7 (383)210-08-14 Факс +7 (383) 210-13-60 E-mail: <u>director@sniim.ru</u>

Аттестат аккредитации ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

М.п.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

		А.В. Кулешов
«	_ »	2018 г.