ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром трансгаз Югорск» КС Сосновская

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром трансгаз Югорск» КС Сосновская предназначена для измерений активной и реактивной электроэнергии, потребленной за установленные интервалы времени отдельными технологическими объектами ООО «Газпром трансгаз Югорск», автоматизированного сбора, хранения, обработки и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую систему с централизованным управлением и распределенной функцией измерений.

Уровни АИИС КУЭ:

1-й уровень – измерительно-информационные комплексы (далее – ИИК), включающие в себя измерительные трансформаторы напряжения (далее – ТН), измерительные трансформаторы тока (далее – ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

2-й уровень – информационно-вычислительные комплексы электроустановки (далее – ИВКЭ) на базе устройства сбора и передачи данных RTU-325 (далее – УСПД);

3-й уровень – информационно-вычислительный комплекс (далее – ИВК), включающий в себя каналообразующую аппаратуру, автоматизированные рабочие места (далее – АРМ) ООО «Газпром энерго», АО «Межрегионэнергосбыт», центр сбора и обработки информации (далее – ЦСОИ) ООО «Газпром энерго», выполненный на основе промышленного компьютера и работающего под управлением программного обеспечения из состава ИВК «Альфа-ЦЕНТР» (Рег. номер 44595-10).

Принцип действия АИИС КУЭ основан на масштабном преобразовании параметров контролируемого присоединения (ток и напряжение) с использованием электромагнитных трансформаторов тока (ТТ) и напряжения (ТН), измерении и интегрировании мгновенной мощности с использованием счетчиков электрической энергии, автоматическом сборе, хранении и передаче по каналам связи результатов измерений.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Мгновенные значения аналоговых сигналов преобразуются в цифровой код. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения мощности. За период сети (0,02 с) из мгновенных значений мощности вычисляется активная мощность, из мгновенных значений тока и напряжения их среднеквадратические значения и, затем, полная мощность. Реактивная мощность вычисляется из значений активной и полной мощности.

Вычисленные значения активной и реактивной мощности каждого направления преобразуются в частоту следования импульсов. Во внутренних регистрах счетчиков осуществляется накопление импульсов, соответствующих каждому виду и направлению передачи электроэнергии в течение интервала времени 30 минут. По окончании этого интервала времени накопленное количество импульсов из каждого регистра переносится в долговременную энергонезависимую память с указанием времени измерений в шкале координированного времени UTC.

УСПД в составе ИВКЭ осуществляет:

- один раз в 30 минут опрос счетчиков электрической энергии и сбор результатов измерений;
- обработку, заключающуюся в пересчете количества накопленных импульсов за период 30 минут в именованные величины;
 - хранение результатов измерений в базе данных;
 - передачу результатов измерений в ИВК.

В ИВК осуществляется:

- сбор данных с уровня ИВКЭ;
- хранение полученных в результате обработки приращений электроэнергии в базе данных;
 - визуальный просмотр результатов измерений из базы данных;
- формирование и передача данных прочим участникам и инфраструктурным организациям оптового и розничного рынков электроэнергии и мощности ОРЭМ за электронноцифровой подписью в формате XML-макетов в соответствии с регламентами ОРЭМ.
- В составе АИИС КУЭ на функциональном уровне выделена система обеспечения единого времени (СОЕВ). СОЕВ функционирует следующим образом. Устройство синхронизации системного времени УССВ-16HVS осуществляет прием и обработку сигналов GPS и синхронизацию часов УСПД со шкалой времени UTC с периодичностью не реже 1 раза в 30 минут. УСПД передает собственную шкалу времени на уровень ИИК ТИ. При каждом опросе счетчика УСПД вычисляет поправку времени часов счетчика. И если поправка превышает величину ± 2 с, УСПД формирует команду на синхронизацию счетчика.

Информационные каналы связи в АИИС КУЭ построены следующим образом:

1. Каналы связи между ИИК и ИВКЭ.

Результаты измерений, техническая и служебная информации передаются со счетчиков на уровень ИВКЭ в режиме автоматической передачи данных по программируемому расписанию опроса, но не реже одного раза в сутки.

Данные со счетчиков электроэнергии передаются через преобразователь интерфейсов RS-485/Ethernet в УСПД RTU-325..

2. Каналы связи между ИВКЭ и ИВК.

Результаты измерений, техническая и служебная информации передаются на уровень ИВК в режимах автоматической передачи данных или выполнения запроса «по требованию».

Связь между ИВКЭ и ИВК организована по каналам связи, разделенным на физическом уровне:

- в качестве основного канала связи используется спутниковый канал передачи данных по технологии V-SAT.
- на случай выхода основного канала связи в качестве резервного используется наземный цифровой канал связи G.701

Передача информации другим заинтересованным субъектам ОРЭ осуществляется с уровня ИВК. Передача информации происходит через межсетевой экран.

ИИК ТИ, ИВКЭ, ИВК и каналы связи между ними образуют измерительные каналы (ИК).

Перечень измерительных каналов и измерительных компонентов (средств измерений) в составе первого и второго уровней АИИС КУЭ приведен в таблице 1.

Таблица 1 – перечень ИК и состав первого и второго уровней АИИС КУЭ

	1	Состав первого и второго уровней АИИС КУЭ				
№ ИК	Диспетчерское наименование ИК	Трансформатор тока	Трансформатор напряжения	Счётчик электрической энергии	ИВКЭ (УСПД)	
1	ПС 110/10 кВ «Сосновская», ЗРУ- 10 кВ, 1 СШ 10 кВ, яч. 13 Ввод № 1	J17ARG кл.т. 0,2 Ктт = 1000/5 Рег. № 19809-00	VRM2N/S2 кл.т. 0,5 Ктн = 10000/100 Рег. № 18532-99	Альфа А1800, A1802RALQ- P4GB-DW-4 кл.т. 0,2S/0,5 Per. № 31857-06		
2	ПС 110/10 кВ «Сосновская», ЗРУ- 10 кВ, 2 СШ 10 кВ, яч. 14 Ввод № 2	J17ARG кл.т. 0,2 Ктт = 1000/5 Рег. № 19809-00	VRM2N/S2 кл.т. 0,5 Ктн = 10000/100 Рег. № 18532-99	Альфа A1800, A1802RALQ- P4GB-DW-4 кл.т. 0,2S/0,5 Per. № 31857-06		
3	ПС 110/10 кВ «Сосновская», ЗРУ- 10 кВ, 3 СШ 10 кВ, яч. 61 Ввод № 3	J17ARG кл.т. 0,2 Ктт = 1000/5 Рег. № 19809-00	VRM2N/S2 кл.т. 0,5 Ктн = 10000/100 Рег. № 18532-99	Альфа A1800, A1802RALQ- P4GB-DW-4 кл.т. 0,2S/0,5 Рег. № 31857-06	УСПД RTU- 325 Per №	
4	ПС 110/10 кВ «Сосновская», ЗРУ- 10 кВ, 4 СШ 10 кВ, яч. 62 Ввод № 4	J17ARG кл.т. 0,2 Ктт = 1000/5 Рег. № 19809-00	VRM2N/S2 кл.т. 0,5 Ктн = 10000/100 Рег. № 18532-99	Альфа А1800, A1802RALQ- P4GB-DW-4 кл.т. 0,2S/0,5 Per. № 31857-06	37288- 08	
5	ПС 110/10 кВ «Сосновская», ЗРУ- 10 кВ, 3 СШ 10 кВ, яч. 41	ТСF2/В кл.т. 0,5 Ктт = 100/5 Рег.№ 18531-99	VRM2N/S2 кл.т. 0,5 Ктн = 10000/100 Рег. № 18532-99	СЭТ-4ТМ.03М кл.т. 0,2S/0,5 Рег. № 36697-12		
6	ПС 110/10 кВ «Сосновская», ЗРУ- 10 кВ, 4 СШ 10 кВ, яч. 38	ТСF2/В кл.т. 0,5 Ктт = 100/5 Рег.№ 18531-99	VRM2N/S2 кл.т. 0,5 Ктн = 10000/100 Рег. № 18532-99	СЭТ-4ТМ.03М кл.т. 0,2S/0,5 Рег. № 36697-12		

Пломбирование АИИС КУЭ не предусмотрено.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦентр». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 2.

Таблица 2 - Идентификационные признаки метрологически значимой части ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование программного обеспечения	ac_metrology.dll	
Номер версии (идентификационный номер) программного обеспечения	12.1	
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму MD5)	3e736b7f380863f44cc8e6f7bd211c54	

Метрологические и технические характеристики

Метрологические характеристики приведены в таблице 3, технические характеристики приведены в таблице 4.

Таблица 3 – Метрологические характеристики

І, % от	Коэффициент	ИК № 1, 2, 3, 4		ИК № 5, 6			
Іном	мощности	$\pm \delta_{\mathrm{Wo}}{}^{\mathrm{A}}$, %	$\pm \delta_{W}^{A}$, %	$\pm \delta_{W}^{P}$, %	±δ _{Wo} ^A , %	$\pm \delta_{W}^{A}$, %	$\pm \delta_{W}^{P}$, %
5	0,50	±2,3	±2,4	±2,1	±5,4	±5,4	±3,0
5	0,80	±1,5	±1,6	±2,5	±2,9	±2,9	±4,6
5	0,87	±1,3	±1,5	±2,8	±2,5	±2,6	±5,6
5	1,00	±1,1	±1,1	1	±1,8	±1,8	-
20	0,50	±1,6	±1,7	±1,7	±2,9	±3,0	±2,0
20	0,80	±1,0	±1,1	±2,0	±1,6	±1,7	±2,8
20	0,87	±0,9	±1,1	±2,2	±1,4	±1,5	±3,3
20	1,00	±0,8	±0,8	1	±1,1	±1,1	-
100, 120	0,50	±1,4	±1,5	±1,7	±2,2	±2,3	±1,8
100, 120	0,80	±0,9	±1,1	±1,9	±1,2	±1,4	±2,3
100, 120	0,87	±0,8	±1,0	±2,1	±1,1	±1,2	±2,6
100, 120	1,00	±0,7	±0,8	-	±0,9	±0,9	-

Пределы допускаемого значения поправки часов, входящих в COEB ±5 с.

Примечания:

- 1. $\delta_{Wo}{}^{A}$ границы допускаемой основной относительной погрешности измерения активной энергии;
- 2. δ_W^{A} границы допускаемой относительной погрешности измерения активной энергии в рабочих условиях применения;
- 3. $\delta_W^{\ P}$ границы допускаемой относительной погрешности измерения реактивной энергии в рабочих условиях применения.

Таблица 4 – Технические характеристики

Таолица 4 — Технические характеристики				
Характеристика	Значение			
Количество измерительных каналов	6			
Период измерений активной и реактивной средней электрической	30			
мощности и приращений электрической энергии, минут				
Период сбора данных со счетчиков электрической энергии, минут	30			
Формирование XML-файла для передачи внешним системам	автоматическое			
Формирование базы данных с результатами измерений с указанием	автоматическое			
времени проведения измерений и времени поступления результатов				
измерений в базу данных				
Глубина хранения результатов измерений в базе данных не менее, лет	3,5			
Ведение журналов событий ИВК, ИВКЭ и ИИК ТИ	автоматическое			
Рабочие условия применения компонентов АИИС КУЭ:				
- температура окружающего воздуха (кроме ТТ и ТН), °С	от 0 до +40			
- температура окружающего воздуха (для ТТ и ТН), °С	от -40 до +40			
- частота сети, Гц	от 49,5 до 50,5			
- напряжение сети питания, В	от 198 до 242			
- индукция внешнего магнитного поля, мТл	не более 0,05			
Допускаемые значения информативных параметров:				
- Tok, $\%$ ot I_{hom}	от 5 до 120			
- напряжение, % от U _{ном}	от 90 до 110			
- коэффициент мощности cos j	0,5 инд. $-1,0-0,8$			
	емк.			

Знак утверждения типа

Знак утверждения типа наносится на титульный лист формуляра МРЕК.411711. 077.ФО «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром трансгаз Югорск» КС Сосновская. Формуляр».

Комплектность средства измерений

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Тип, модификация,	Количе-
	обозначение	ство, шт.
Трансформаторы тока	J17ARG	12
Трансформаторы тока	TCF2/B	6
Трансформаторы напряжения	VRM2N/S2	20
Счетчики	СЭТ-4TM.03M	2
Счетчики	Альфа А1800	4
ИВК	ЦСОИ, АРМ	1
Устройства синхронизации системного времени	УССВ-16HVS	1
Устройства сбора и передачи данных	RTU-325	1
Система автоматизированная информационно-	MPEK.411711.077.	1
измерительная коммерческого учета электроэнергии	ФО	
(АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром		
трансгаз Югорск» КС Сосновская. Формуляр		
Система автоматизированная информационно-	МП-144-	1
измерительная коммерческого учета электроэнергии	RA.RU.310556-2018	
(АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром		
трансгаз Югорск» КС Сосновская. Методика поверки		

Поверка

осуществляется по документу МП-144-RA.RU.310556-2018 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром трансгаз Югорск» КС Сосновская, утвержденному ФГУП «СНИИМ» $13.06.2018 \, \Gamma$.

Основные средства поверки:

- NTP серверы, работающие от рабочих шкал Государственного первичного эталона времени, частоты и национальной шкалы времени ГЭТ 1-2012 или вторичных эталонов ВЭТ 1-5, ВЭТ 1-7;
- для проверки вторичных цепей ТТ и ТН в соответствии с «Методикой выполнения измерений параметров вторичных цепей измерительных трансформаторов тока и напряжения», аттестованной ФГУП «СНИИМ» 24 апреля 2014 г. (регистрационный №ФР.1.34.2014.17814);
 - для ТТ по ГОСТ 8.217-2003;
 - для ТН по ГОСТ 8.216-2011;
- для счетчиков электрической энергии Альфа A1800 в соответствии с документом «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДИЯМ.411152.018 МП», утвержденным ГЦИ СИ ФГУП «ВНИИМС» в 2011 г. и документом «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Дополнение к методике поверки ДИЯМ.411152.018 МП», утвержденным ГЦИ СИ ФГУП «ВНИИМС» в 2012 г.;
- для счетчиков электрической энергии СЭТ-4ТМ.03М по документу ИГЛШ.411152.145РЭ1 «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации Часть 2. Методика поверки» утвержденным ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 мая 2012 г.;

- устройства сбора и передачи данных RTU-325 в соответствии с документом ДЯИМ.466.543.005МП «Устройства сбора и передачи данных серии RTU-325 и RTU-325L. Методика поверки», утвержденным ГЦИ СИ Φ ГУП «ВНИИМС» в 2008 г.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик АИИС КУЭ с требуемой точностью.

Знак поверки наносятся на свидетельство о поверке.

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром трансгаз Югорск» КС Сосновская. Свидетельство об аттестации методики измерений № 382-RA.RU.311735-2018 от 31.05.2018 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром трансгаз Югорск» КС Сосновская

ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Оренбургский филиал Общества с ограниченной ответственностью «Газпром энерго» ИНН 7736186950

Адрес: 460021, г. Оренбург, ул. 60 лет Октября, д. 11

Телефон: +7 (3532) 687-126 Факс: +7 (3532) 687-127

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии»

(ФГУП «СНИИМ»)

Адрес: 630004, г. Новосибирск, проспект Димитрова, д. 4

Телефон: +7 (383) 210-08-14 Факс: +7 (383) 210-13-60 E-mail: director@sniim.ru

Аттестат аккредитации ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

A.B.	Кулешов

М.п. «____»____2018 г.