ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная учета тепловой энергии и параметров теплоносителя Зауральской ТЭЦ ООО «БГК»

Назначение средства измерений

Система автоматизированная учета тепловой энергии и параметров теплоносителя Зауральской ТЭЦ ООО «БГК» (далее - Система) предназначена для измерений количества теплоты (тепловой энергии), параметров теплоносителя (температуры, давления, расхода) и количества (объема, массы) теплоносителя при учете тепловой энергии.

Описание средства измерений

Принцип действия Системы основан на непрерывном измерении с помощью первичных измерительных преобразователей (далее – ПИП) температуры, давления, объемного расхода теплоносителя с последующей обработкой измерительной информации.

Система представляет собой трехуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерений и представляет собой единичный экземпляр измерительной системы, спроектированный для конкретного объекта из компонентов серийного изготовления.

Нижний уровень (1-й уровень) представлен первичными измерительными преобразователями. Для измерений тепловой энергии, параметров теплоносителя на трубопроводах установлены следующие ПИП:

- преобразователь расхода теплоносителя в числоимпульсный сигнал;
- преобразователь температуры теплоносителя в значение электрического сопротивления;
- преобразователь давления теплоносителя в значение силы постоянного электрического тока.

На среднем уровне (2-ом уровне) происходит преобразование сигналов с выходов первичных измерительных преобразователей, поступающих на соответствующие входы тепловычислителя СПТ961 модификации 961.2 с адаптером АДС97 в соответствующие значения объемного расхода, давления и температуры теплоносителя и вычисления объема и массы теплоносителя, разности температур и тепловой энергии теплоносителя. Вычисляются как мгновенные, так и средние и средневзвешенные за установленные период времени значения физических величин. Результаты измерений помещаются в архив (базу данных) тепловычислителя.

Результаты измерений и вычислений, выполненных тепловычислителем, по проводным линиям связи в виде цифрового сигнала с заданной периодичностью поступают на верхний уровень (3-ий уровень) - в сервер информационно-вычислительного комплекса (далее – ИВК). ИВК включает в себя сервер базы данных, автоматизированные рабочие места (далее – АРМ), а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижнего уровня, формирование справочных и отчетных документов, хранение измерительной информации и журналов событий в базе данных.

В состав Системы входит один узел учета. Перечень измерительных каналов (далее - ИК) и средства измерений входящие в состав ИК приведены в таблице 1.

Таблица 1 – Перечень и состав ИК Системы

	Средства измерений, входящие в состав ИК			в ИК	
№	Наименование ИК	Первый уровень		Второй	
ИК		Тип СИ	Рег. номер	Тип СИ	Рег. номер
	ИК давления (ТМ-18		-	СПТ961.2	35477-07
1.1	подающий	МИДА-13П	17636-06	АДС97	38646-08
	трубопровод)				30040-00
	ИК температуры (ТМ-			СПТ961.2	35477-07
1.2	18 подающий	КТПТР-01	14638-05	АДС97	38646-08
	трубопровод)				
1.0	ИК объемного расхода	УРЖ2КМ Ду500	23363-07	СПТ961.2	35477-07
1.3	(ТМ-18 подающий			АДС97	38646-08
	трубопровод)				25477 07
1.4	ИК массы (ТМ-18 подающий	ИК №№ 1.1, 1.2, 1.3		СПТ961.2	35477-07
1,4	трубопровод)			АДС97	38646-08
	ИК объема (ТМ-18			СПТ961.2	35477-07
1.5	подающий	ИК № 1	.3		
1.0	трубопровод)	1111012		АДС97	38646-08
	ИК тепловой энергии			СПТ961.2	35477-07
1.6	(ТМ-18 подающий	ИК №№ 1.1, 1.2, 1.4		А ПСОТ	20646.00
	трубопровод)			АДС97	38646-08
2.1	ИК давления (ТМ-18	МИДА-13П	17636-06	СПТ961.2	35477-07
2.1	обратный трубопровод)	МИДА-1311 17030-00	АДС97	38646-08	
	ИК температуры (ТМ-	КТПТР-01	14638-05	СПТ961.2	35477-07
2.2	18 обратный			АДС97	38646-08
	трубопровод)				
2.2	ИК объемного расхода	УРЖ2КМ Ду500	23363-07	СПТ961.2	35477-07
2.3	(ТМ-18 обратный			АДС97	38646-08
	трубопровод)			СПТО61.2	
2.4	ИК массы (ТМ-18 обратный трубопровод)	ИК №№ 2.1,	2.2, 2.3	СПТ961.2 АДС97	35477-07 38646-08
	ИК объема (ТМ-18			СПТ961.2	35477-07
2.5	обратный трубопровод)	ИК № 2	2.3	АДС97	38646-08
	ИК тепловой энергии			СПТ961.2	35477-07
2.6	(ТМ-18 обратный	ИК №№ 2.1, 2.2, 2.4			
	трубопровод)			АДС97	38646-08
	ИК давления (ТМ-12	МИДА-13П	17636-06	СПТ961.2	35477-07
3.1	подающий				
	трубопровод)			АДС97	38646-08
3.2	ИК температуры (ТМ-	КТПТР-01	14638-05	СПТ961.2	35477-07
	12 подающий			АДС97	38646-08
	трубопровод)				
3.3	ИК объемного расхода	ВЗЛЕТ МР Ду500	28363-04	СПТ961.2	35477-07
	(ТМ-12 подающий			АДС97	38646-08
	трубопровод)	, ,			
3.4	ИК массы (ТМ-12 подающий	JAW MaMa 2 1	3 2 3 3	СПТ961.2	35477-07
	подающии трубопровод)	ИК №№ 3.1, 3.2, 3.3		АДС97	38646-08
	труоопровод)				

Продолжение таблицы 1

No	олжение гаолицы г	Средства измерений, вх		ходящие в соста	в ИК
ИК	Наименование ИК	Первый уровень		Второй уровень	
TIIX		Тип СИ	Рег. номер	Тип СИ	Рег. номер
	ИК объема (ТМ-12	ИК № 3.3		СПТ961.2	35477-07
3.5	подающий			АДС97	38646-08
	трубопровод)			СПТ961.2	35477-07
3.6	ИК тепловой энергии (TM-12 подающий	ИК №№ 3.1, 3.2, 3.4		C111901.2	334/7-07
3.0	трубопровод)			АДС97	38646-08
4.1	ИК давления (ТМ-12	МИДА-13П	17636-06	СПТ961.2	35477-07
4.1	обратный трубопровод)	МИДА-1311	17030-00	АДС97	38646-08
	ИК температуры (ТМ-			СПТ961.2	35477-07
4.2	12 обратный	КТПТР-01	14638-05	АДС97	38646-08
	трубопровод)			CHT061.2	25.477.07
4.3	ИК объемного расхода	ВЗЛЕТ МР	20262 04	СПТ961.2	35477-07
4.3	(ТМ-12 обратный трубопровод)	Ду500	28363-04	АДС97	38646-08
4.4	ИК массы (ТМ-12			СПТ961.2	35477-07
4.4	обратный трубопровод)	ИК №№ 4.1, 4.2, 4.3		АДС97	38646-08
4.5	ИК объема (ТМ-12	ИК № 4.3		СПТ961.2	35477-07
4.3	обратный трубопровод)			АДС97	38646-08
	ИК тепловой энергии	ИК №№ 4.1, 4.2, 4.4		СПТ961.2	35477-07
4.6	(ТМ-12 обратный трубопровод)			АДС97	38646-08
	ИК температуры	TTTT-1 2	4.1.7.7.4.0	СПТ961.2	35477-07
5.1	(Подпитка теплосети)	ТПТ1-3	46155-10	АДС97	38646-08
<i>5</i> 2	ИК объемного расхода		22262.07	СПТ961.2	35477-07
5.2	(Подпитка теплосети)	УРЖ2КМ Ду200	23363-07	АДС97	38646-08
5.3	ИК массы (подпитка	ИК №№ 5.1, 5.2		СПТ961.2	35477-07
5.5	теплосети)			АДС97	38646-08
5.4	ИК объема (Подпитка	ИК № 5.2		СПТ961.2	35477-07
5.4	теплосети)			АДС97	38646-08
5.5	ИК тепловой энергии	ИК №№ 5.1, 5.3		СПТ961.2	35477-07
ر.ى	(Подпитка теплосети)			АДС97	38646-08
6.1	ИК давления (исходная	МИЛА 12П	17636-06	СПТ961.2	35477-07
	вода)	МИДА-13П 17636-06		АДС97	38646-08
6.2	ИК температуры	ТПТ1-3	46155-10	СПТ961.2	35477-07
	(исходная вода)	11111-3		АДС97	38646-08

В Системе предусмотрены защита от несанкционированного доступа к данным и сохранность данных при отключении электропитания.

В целях предотвращения несанкционированной настройки и вмешательства в работу Системы производится пломбирование средств измерений, входящих в состав Системы. Способы защиты и места пломбирования средств измерений, входящих в состав Системы приведены в их описаниях типа и эксплуатационной документации.

Программное обеспечение

Программное обеспечение Системы представлено встроенным (интегрированным) ПО тепловычислителя и автономным ПО ИВК, выполняющимся на сервере и автоматизированных рабочих местах. Автономное ПО предназначено для автоматического сбора, обработки и хранения данных, отображения полученной информации в удобном для анализа и отчетности виде.

ПО обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа.

Идентификационные данные метрологически значимой части ΠO представлены в таблицах с 2 по 5.

Уровень защиты встроенного программного обеспечения тепловычислителя от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Уровень защиты автономного ПО от непреднамеренных и преднамеренных изменений – «средний» в соответствии Р 50.2.077-2014.

Таблица 2 – Идентификационные данные программного обеспечения тепловычислителя

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	-
Номер версии (идентификационный номер) ПО	01
Цифровой идентификатор ПО	D8A4

Таблица 3 – Идентификационные данные ПО ОРС-сервера "ЛОГИКА"

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	DAS.exe
Номер версии (идентификационный номер) ПО	не ниже v3.2
Цифровой идентификатор ПО	90f85810d203671efe372130e459dc50
Алгоритм вычисления цифрового идентификатора ПО	MD5

Примечание — Номер версии ПО должен быть не ниже указанного в таблице. Значение цифрового идентификатора ПО, приведенное в таблице, относится только к файлу обозначенной в таблице версии.

Таблица 4 – Идентификационные данные ПО SCADA/HMI DataRate

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Krug.SCADA.RuntimeHost.exe
Номер версии (идентификационный номер) ПО	не ниже 3.3
Цифровой идентификатор ПО	5a062535e89f845d4384d00e7a5bfd0d
Алгоритм вычисления цифрового идентификатора ПО	MD5
	_

Примечание – Номер версии ПО должен быть не ниже указанного в таблице. Значение цифрового идентификатора ПО, приведенное в таблице, относится только к файлу обозначенной в таблице версии.

Таблица 5 – Идентификационные данные ПО АСТЭП

Идентификационное наименование ПО	ASTEP.exe
Номер версии (идентификационный номер) ПО	не ниже 2.4.88.281
Цифровой идентификатор ПО	51262d95498c36a25743c7ce3f7c7e34
Алгоритм вычисления цифрового идентификатора ПО	MD5

Примечание — номер версии ΠO должен быть не ниже указанного в таблице. Значение цифрового идентификатора ΠO , приведенное в таблице, относится только к файлу обозначенной в таблице версии.

Метрологические и технические характеристики

Метрологические характеристики Системы приведены в таблице 6, основные технические характеристики в таблице 7.

Таблица 6 – Метрологические характеристики

1 аолица 6 – Метрологические характеристики	
Наименование характеристики	Значение
Диапазон измерений тепловой энергии, Гкал	от 0,04 до 99999999
Диапазон измерений объема, м ³	от 8 до 99999999
Диапазон измерений массы, т	от 8 до 99999999
Диапазон измерений объемного расхода для ИК №1.3, 2.3, м ³ /ч	от 150 до 7500
Диапазон измерений объемного расхода для ИК №3.3, 4.3, м ³ /ч	от 150 до 3000
Диапазон измерений объемного расхода для ИК №5.2, м ³ /ч	от 8,0 до 1200
Диапазон измерений температуры, °С	от 0 до +150
Диапазон измерений разности температур, °С	от +5 до +145
Диапазон измерений избыточного давления для ИК №1.1, 3.1,	
МПа	от 0 до 1,6
Диапазон измерений избыточного давления для ИК №2.1,	
<i>№</i> 4.1, №6.2, MΠa	от 0 до 0,4
Пределы допускаемой относительной погрешности при	
измерении тепловой энергии, %	$\pm (3+4Dt_{H}/Dt+0,02\cdot G_{max}/G)$
Пределы допускаемой относительной погрешности при	
измерении расхода, объема и массы, %	±2,1
Пределы допускаемой абсолютной погрешности измерений	
температуры, °С	$\pm (0,25+0,002 \cdot t)$
Пределы допускаемой относительной погрешности измерений	
разности температур, %	$\pm (0.5 + 3Dt_H/Dt)$
Пределы допускаемой приведенной погрешности измерений	
избыточного давления (от диапазона измерений), %	±1,0
Пределы допускаемой относительной погрешности измерений	
интервалов времени, %	±0,01
П.,	

Примечания:

- 1. $^{\circ}$ G и $^{\circ}$ G и $^{\circ}$ С $^{\circ}$ Значение измеряемого расхода и его наибольшее значение, $^{\circ}$ Уч
- 2. t измеренное значение температуры, °C
- 3. Dt и Dt_н разность температур и наименьшее значение разности температур, °C

Таблица 7 – Основные технические характеристики

Наименование характеристики	Значение
Рабочие условия эксплуатации:	
- для нижнего и среднего уровня:	
- температура окружающего воздуха, °C	от +5 до +50
- относительная влажность воздуха при температуре +35 °C, %, не	
более	95
- атмосферное давление, кПа	от 84 до 106,7
- для верхнего уровня:	
- температура окружающего воздуха, °C	от +10 до +35
- относительная влажность воздуха при температуре +35 °C, %, не	
более	80
- атмосферное давление, кПа	от 84 до 106,7

Продолжение таблицы 7

Наименование характеристики	Значение
Параметры электрического питания:	
 напряжение переменного тока, В 	от 187 до 242
- частота переменного тока, Гц	от 49 до 51

Знак утверждения типа

наносится в левый верхний угол титульного листа руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 8 – Комплектность средства измерений

Наименование	Обозначение	Количество
Система автоматизированная учета тепловой		
энергии и параметров теплоносителя	-	1 шт.
Зауральской ТЭЦ ООО «БГК», зав. № 01		
Система автоматизированная учета тепловой		
энергии и параметров теплоносителя	_	1 экз.
Зауральской ТЭЦ ООО «БГК». Руководство по	_	1 3K3.
эксплуатации		
Система автоматизированная учета тепловой		
энергии и параметров теплоносителя	МП-142-RA.RU.310556-2018	1 экз.
Зауральской ТЭЦ ООО «БГК». Методика	WIII-142-ICT.ICO.310330-2010	1 JKS.
поверки		
Комплект эксплуатационных документов на		
комплектующие изделия, входящие в состав	-	1 экз.
системы		

Поверка

осуществляется по документу МП-142-RA.RU.310556-2018 «Система автоматизированная учета тепловой энергии и параметров теплоносителя Зауральской ТЭЦ ООО «БГК». Методика поверки», утвержденному ФГУП «СНИИМ» 13 июня 2018 г.

Основные средства поверки:

- средства поверки в соответствии с документами на поверку средств измерений, входящих в состав Системы.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе автоматизированной учета тепловой энергии и параметров теплоносителя Зауральской ТЭЦ ООО «БГК»

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем Основные положения

ГОСТ Р 56942-2016 Автоматизированные измерительные системы контроля и учета тепловой энергии. Общие технические условия

«Правила коммерческого учета тепловой энергии, теплоносителя», утвержденные постановлением Правительства РФ от 18.11.2013 № 1034

Изготовитель

Общество с ограниченной ответственностью «Башкирская генерирующая компания» (ООО «БГК»)

ИНН 0277077282

Адрес: 450059, Республика Башкортостан, г. Уфа, ул. Р. Зорге, д. 3

Телефон: +7 (347) 222-86-25 Web-сайт: <u>http://www.bgkrb.ru</u>

E-mail: office@bgkrb.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного знамени научно-исследовательский институт метрологии»

Адрес: 630004, г. Новосибирск, пр. Димитрова, 4 Телефон: +7 (383) 210-08-14, факс: +7 (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

М.п.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

		А.В. Кулешов
« <u>_</u>	»	2018 г.