ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Саратовской ТЭЦ-5

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Саратовской ТЭЦ-5 (далее по тексту – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительные каналы (ИК) АИИС КУЭ включают в себя следующие уровни:

первый уровень - измерительно-информационный комплекс (ИИК), включающий в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту – Счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

второй уровень – информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД) на основе контроллера многофункционального ARIS MT200, регистрационный номер в Федеральном информационном фонде 53992-13 (Рег. № 53992-13), систему обеспечения единого времени (СОЕВ), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, коммутационное оборудование;

третий уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер ИВК на базе сервера Hewlett-Packard с установленным серверным программным обеспечением ПО «Энергосфера», автоматизированные рабочие места (АРМ) персонала, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (не реже 1 раза в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений в организации-участники оптового рынка электроэнергии и мощности;
- предоставление дистанционного доступа к средствам измерений и результатам измерений по запросу Коммерческого оператора торговой системы оптового рынка электроэнергии и мощности;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ:
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ);
 - передача журналов событий счетчиков в базу данных ИВК.

Первичные токи и напряжение преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по измерительным линиям связи поступают на входы счетчика электроэнергии, где производится измерение мгновенных и средних значений активной и реактивной мощности. На основании средних значений мощности измеряются приращения электроэнергии за интервал времени 30 минут.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где производится сбор и хранение результатов измерений. Далее информация поступает на ИВК.

УСПД автоматически проводит сбор результатов измерений и состояния счетчиков электрической энергии (один раз в 30 минут) по проводным и безпроводным линиям связи.

На верхнем уровне системы выполняется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов.

Информация с сервера ИВК может быть получена на автоматизированные рабочие места (APM) по локальной вычислительной сети (ЛВС) предприятия.

Один раз в сутки сервер ИВК АИИС КУЭ автоматически формирует файл отчета с результатами измерений в формате XML. Файл с результатами измерений подписывается электронной цифровой подписью и передается в программно-аппаратный комплекс (ПАК) АО «АТС», АО «СО ЕЭС» и организациям-участникам оптового рынка электроэнергии и мошности.

Каналы связи не вносят дополнительных погрешностей в измеренные значения электроэнергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя источник сигналов эталонного времени на базе GPS-приемника, входящего в состав УСПД. Время УСПД синхронизировано с временем приемника, сличение ежесекундное, погрешность синхронизации не более $\pm 0,2$ с. Сличение шкалы времени ИВК и УСПД, осуществляется с периодичностью 5 мин. Корректировка шкалы времени ИВК осуществляется УСПД при расхождении часов ИВК и УСПД более ± 2 с. Часы счетчиков синхронизируются от часов УСПД при каждом сеансе связи, но не реже чем 1 раз в сутки, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 3 с.

Программное обеспечение

В состав программного обеспечения (ПО) АИИС КУЭ входят ПО счетчиков ПО сервера ИВК, УСПД, ПО АРМ на основе специализированного программного пакета – программный комплекс «Энергосфера» (ПО «Энергосфера»).

Таблица 1 – Идентификационные данные программного обеспечения «Энергосфера»

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ПО «Энергосфера»
Номер версии (идентификационный номер) ПО	не ниже 8
Цифровой идентификатор ПО (MD5)	CBEB6F6CA69318BED976E08A2BB7814B
Другие идентификационные данные, если имеются	pso_metr.dll

Границы интервалов допускаемых относительных погрешностей по активной и реактивной электроэнергии, а также для разных временных (тарифных) зон не зависят от способов передачи измерительной информации и определяются классами точности применяемых счетчиков и измерительных трансформаторов.

ПО АИИС КУЭ «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 – Состав первого и второго уровней ИК АИИС КУЭ

1 40.	Состав первого и второго уровней ИК АИИС КУЭ Состав первого и второго уровней ИК					
№ ИК	Наименование ИК	Трансформатор тока	Трансформатор напряжения	Счетчик электрической энергии	ИВКЭ	
1	2	3	4	5	6	
1	ТЭЦ-5, Г-1	ТШВ15Б кл.т 0,5 Ктт = 8000/5 Рег. № 5719-76	3HOM-15-63 кл.т 0,5 Ктн = (10000/√3)/(100/√3) Рег. № 1593-70	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04		
2	ТЭЦ-5, Г-2	ТШЛ 20-1 кл.т 0,2 Ктт = 8000/5 Рег. № 4016-74	3HOM-15-63 кл.т 0,5 Ктн = (10000/√3)/(100/√3) Рег. № 1593-70	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04		
3	ТЭЦ-5, Г-3	ТШЛ20Б-1 кл.т 0,2 Ктт = 8000/5 Рег. № 4016-74	3HOM-15-63 кл.т 0,5 Ктн = (10000/√3)/(100/√3) Рег. № 1593-70	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	ARIS MT200,	
4	ТЭЦ-5, Г-4	ТШВ15Б кл.т 0,2 Ктт = 8000/5 Рег. № 5719-76	3HOM-15-63 кл.т 0,5 Ктн = (10000/√3)/(100/√3) Рег. № 1593-70	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	Per. № 53992-13	
5	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Пищевая 2ц.	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04		
6	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Пищевая 1ц.	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04		

1	должение таблицы 2	3	4	5	6
7	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Затон 2ц.	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5	
8	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Затон 1ц.	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
9	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Ленинская	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
10	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Кировская	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
11	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Мирный 2ц.	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	ARIS MT200, Per. № 53992-13
12	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Мирный 1ц.	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
13	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Гуселка	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
14	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - ПТФ	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	

Hpo	должение таблицы 2				
1	2	3	4	5	6
15	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Водозабор	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
16	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Курдюм 1ц.	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
17	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Курдюм 2ц.	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
18	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Саратовская 1ц.	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
19	ТЭЦ-5, ОРУ-110 кВ, ВЛ-110 кВ ТЭЦ-5 - Саратовская 2ц.	ТВ-110/50 кл.т 0,5 Ктт = 1000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	ARIS MT200, Per. № 53992-13
20	ТЭЦ-5, ОРУ-110 кВ, ШОВ 110 кВ	ТВ-110/50 кл.т 0,5 Ктт = 2000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
21	ТЭЦ-5, ОРУ-110 кВ, ОВ 110 кВ	ТВ-110/50 кл.т 0,5 Ктт = 2000/5 Рег. № 3190-72	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Рег. № 14205-94	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
22	ТЭЦ-5, Т-1 Водозабор 6 кВ	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Рег. № 1856-63	НТМИ-6-66 кл.т 0,5 Ктн = 6000/100 Рег. № 2611-70	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	

1	2	3	4	5	6
23	ТЭЦ-5, Т-2 Водозабор 6 кВ	ТВЛМ-10 кл.т 0,5 Ктт = 300/5 Рег. № 1856-63	НТМИ-6-66 кл.т 0,5 Ктн = 6000/100 Рег. № 2611-70	СЭТ-4ТМ.03 кл.т 0,2S/0,5 Рег. № 27524-04	
24	ТЭЦ-5, сборка 0,4 кВ РТЗО № 114НК шкаф 3, АВ № 2	ТОП-0,66 кл.т 0,2 Ктт = 20/5 Рег. № 15174-06	-	ПСЧ- 4ТМ.05М.04 кл.т 0,5S/1,0 Рег. № 36355-07	
25	ТЭЦ-5, сборка 0,4 кВ РТЗО № 231НК шкаф 6, АВ № 8	ТОП-0,66 кл.т 0,2 Ктт = 20/5 Рег. № 15174-06	1	ПСЧ- 4ТМ.05М.04 кл.т 0,5S/1,0 Рег. № 36355-07	
26	ТЭЦ-5, сборка № 1 0,4 кВ НПВК, АВ	ТОП-0,66 кл.т 0,2 Ктт = 30/5 Рег. № 15174-06	-	ПСЧ- 4ТМ.05М.04 кл.т 0,5S/1,0 Рег. № 36355-07	ARIS MT200,
27	ТЭЦ-5, сборка № 2 0,4 кВ НПВК, АВ	ТОП-0,66 кл.т 0,2 Ктт = 30/5 Рег. № 15174-06	-	ПСЧ- 4ТМ.05М.04 кл.т 0,5S/1,0 Рег. № 36355-07	Per. № 53992-13
28	ТЭЦ-5, сборка № 2 0,4 кВ СХР, АВ № 5	Т-0,66 М УЗ кл.т 0,5 Ктт = 20/5 Рег. № 36382-07	-	ПСЧ- 4ТМ.05М.04 кл.т 0,5S/1,0 Рег. № 36355-07	
29	ТЭЦ-5, сборка 0,4 кВ № 6 НЗС, АВ № 4	Т-0,66 М УЗ кл.т 0,5 Ктт = 20/5 Рег. № 36382-07	-	ПСЧ- 4ТМ.05М.04 кл.т 0,5S/1,0 Рег. № 36355-07	

Таблица 3 – Основные метрологические характеристики ИК

Номер ИК	cosφ	погрешности ИК г энергии в рабочи	Границы интервала допускаемой относительной погрешности ИК при измерении активной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ (d), %, при доверительной вероятности, равной 0,95		
r		(d), %, при дове d ₅ %, I ₅ %£I _{изм} <i <sub="">20 %</i>	ерительной вероятно $d_{20\%}, \ I_{20\%} \pounds I_{100\%}$	сти, равной 0,95 d ₁₀₀ %, I ₁₀₀ %£I _{изм} £I _{120%}	
1	2	3	120 % ~ 1 _{ИЗМ} ~ 1 100%	1100 % СТ _{ИЗМ} СТ120% 5	
	1,0	±1,9	±1,2	±1,0	
1, 5 - 23	0,9	±2,4	±1,4	±1,2	
(Сч. 0,2S; TT 0,5;	0,8	±2,9	±1,7	±1,4	
TH 0,5)	0,7	±3,6	±2,0	±1,6	
	0,5	±5,5	±3,0	±2,3	

продолжение таолицы 5		1			
1	2	3	4	5	
	1,0	±1,2	$\pm 1,0$	±0,9	
2 - 4	0,9	±1,3	$\pm 1,0$	±1,0	
(Сч. 0,2S; ТТ 0,2;	0,8	±1,5	±1,1	±1,1	
TH 0,5)	0,7	±1,7	±1,3	±1,2	
	0,5	±2,4	±1,7	±1,6	
	1,0	±1,6	±1,4	±1,3	
24 25	0,9	±1,7	±1,4	±1,4	
24 – 27 (Cr. 0.55; TT 0.2)	0,8	±1,8	±1,5	±1,4	
(Сч. 0,5S; TT 0,2)	0,7	±2,0	±1,5	±1,5	
	0,5	±2,5	±1,8	±1,6	
		±2,1	±1,6	±1,4	
		±2,6	±1,7	±1,5	
28, 29		±3,1	±1,9	±1,7	
(Сч. 0,5S; ТТ 0,5)		±3,7	±2,2	±1,8	
		±5,5	±3,0	±2,3	
				пемой относительной	
			реактивной электрической		
Hoyen MV	cosφ	энергии в рабочих условиях эксплуатации АИИС КУЭ			
Номер ИК		(d), %, при доверительной вероятности, равной 0,95			
		d _{5 %} ,	d _{20 %} ,	d ₁₀₀ %,	
		$I_{5\%}$ £ $I_{изм}$ < $I_{20\%}$	$I_{20\%}$ £ $I_{_{\rm ИЗM}}$ < I	$I_{100\%}$ $I_{100\%}$ £ $I_{изм}$ £ $I_{120\%}$	
1 5 22	0,9	±6,5	±3,6	±2,7	
1, 5 – 23 (Сч. 0,5; ТТ 0,5;	0,8	±4,5	±2,5	±1,9	
TH 0,5)	0,7	±3,6	±2,1	±1,6	
111 0,0)	0,5	±2,7	±1,6	±1,4	
2 4	0,9	±3,1	±2,1	±1,8	
2-4	0,8	±2,3	±1,6	±1,4	
(Сч. 0,5; ТТ 0,2; ТН 0,5)	0,7	±2,0	±1,4	±1,3	
111 0,5)	0,5	±1,7	±1,2	±1,2	
	0,9	±4,0	±2,3	±1,9	
24 – 27	0,8	±3,2	±2,0	±1,8	
(Сч. 1,0; ТТ 0,2)	0,7	±2,9	±1,9	±1,8	
	0,5	±2,6	±1,9	±1,8	
		±7,0	±3,7	±2,7	
28, 29		±5,1	±2,8	±2,2	
(Сч. 1,0; ТТ 0,5)		±4,2	±2,5	±2,0	
		±3,4	±2,1	±1,9	
Пределы допускаемой абсол	ютной			±5	

Примечания:

- Погрешность измерений электрической энергии $\mathsf{d}_{1(2)\%P}$ и $\mathsf{d}_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$.

 2 Характеристики погрешности ИК даны для измерения электроэнергии и средней
- мощности (получасовой).

3 Допускается замена измерительных трансформаторов, счетчиков и УСПД на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленный в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик. Замена оформляется актом в установленном собственником порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 4 – Основные технические характеристики ИК

Таолица 4 – Основные технические характеристики ИК	
Наименование характеристики	Значение
Нормальные условия применения:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- tok, $\%$ ot I_{hom}	от 1 до 120
- коэффициент мощности, соѕ ф	0,87
- частота, Гц	от 49,85 до 50,15
температура окружающей среды, °С:	
- для счетчиков активной и реактивной энергии:	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- tok, % ot I_{hom}	от 1 до 120
- коэффициент мощности, соѕ ф, не менее	0,5
- частота, Гц	от 49,6 до 50,4
диапазон рабочих температур окружающей среды, °С	
- для TT и TH	от -40 до +50
- для счетчиков	от +10 до +30
- для УСПД	от +10 до +30
магнитная индукция внешнего происхождения, мТл, не более	0,5
Надежность применяемых в АИИС КУЭ компонентов:	
счетчики электроэнергии СЭТ-4ТМ.03:	
- средняя наработка до отказа, ч, не менее	90 000
- среднее время восстановления работоспособности, ч	2
счетчики электроэнергии ПСЧ-4ТМ.05М.04:	
- средняя наработка до отказа, ч, не менее	140000
- среднее время восстановления работоспособности, ч	2
УСПД ARIS MT200:	
- средняя наработка до отказа, ч, не менее	88000
Глубина хранения информации:	
счетчики электроэнергии:	
- тридцатиминутный профиль нагрузки в двух направлениях, сут	114
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электроэнергии по каждому каналу, сут, не менее	45
ИВК:	
- результаты измерений, состояние объектов и средств измерений,	
лет, не менее	3,5
men, me maner	

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;

- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
 - в журналах событий счетчиков и УСПД фиксируются факты:
 - параметрирования;
 - пропадания напряжения;
 - коррекции шкалы времени.

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - счетчиков электроэнергии;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД,
- наличие защиты на программном уровне:
 - пароль на счетчиках электроэнергии;
 - пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции шкалы времени в:

- счетчиках электроэнергии (функция автоматизирована);
- УСПД (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество,
Transcriobanne	Oooshu lenne	ШТ
1	2	3
Трансформатор тока	ТШЛ 20-1	3
Трансформатор тока	ТШЛ20Б-1	3
Трансформатор тока	ТШВ15Б	6
Трансформатор тока	TB-110/50	51
Трансформатор тока измерительный	ТВЛМ-10	4
Трансформатор тока опорный	ТОП-0,66	12
Трансформатор тока	Т-0,66 М У3/II	5
Трансформатор напряжения	3HOM-15-63	12

1	2	3
Трансформатор напряжения	НКФ-110-57 У1	12
Трансформатор напряжения	НТМИ-6-66	2
Счетчик электрической энергии многофункциональный	СЭТ-4ТМ.03	23
Счетчик электрической энергии многофункциональный	ПСЧ-4ТМ.05М	6
Контроллер многофункциональный	ARIS MT200	1
ПО	ПО «Энергосфера»	1
Формуляр	ЭЛ.422231-001.05.ФО	1
Методика поверки	РТ-МП-3592-550-2018	1

Поверка

осуществляется по документу РТ-МП-3592-550-2018 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Саратовской ТЭЦ-5. Методика поверки», утвержденному ФБУ «Ростест-Москва» 26.07.2018 г.

Основные средства поверки:

- средства поверки в соответствии с нормативными документами на средства измерений, входящие в состав АИИС КУЭ;
- прибор для измерения электроэнергетических величин и показателей качества электрической энергии Энергомонитор-3.3T1, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 39952-08;
- радиочасы МИР РЧ-02, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 46656-11;
- прибор комбинированный Testo 622, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 53505-13.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого средства измерений с требуемой точностью.

Знак поверки, в виде оттиска поверительного клейма и (или) наклейки, наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика (методы) измерений количества электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) Саратовской ТЭЦ-5». Свидетельство об аттестации методики (методов) измерений 2366/550-RA.RU.311703-2018 от 26.07.2018 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) Саратовской ТЭЦ-5

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Агентство энергетических решений» (OOO «АЭР»)

ИНН 7722771911

Адрес: 111116, г. Москва, ул. Лефортовский вал, д. 7Г, стр. 5

Телефон (факс): +7 (499) 681-15-52 Web-сайт: <u>www.energoagent.com</u> E-mail: <u>mail@energoagent.com</u>

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон (факс): +7 (495) 544-00-00

Web-сайт: <u>www.rostest.ru</u> E-mail: info@rostest.ru

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310639 от 16.04.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2018 г.