ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЗЭМ «Экстрол»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЗЭМ «Экстрол» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений и включает 2 измерительных канала (ИК).

Измерительные каналы состоят из двух уровней АИИС КУЭ.

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (ТТ), трансформаторы напряжения (ТН) и счетчики активной и реактивной электроэнергии (счётчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-4.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (ПО) «Пирамида 2000», устройство синхронизации времени типа УСВ-3 (УСВ-3).

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО «СО ЕЭС».

ИК состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на сервер БД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ-3, принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). Корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и ИВК на величину более ± 2 с, но не чаще одного раза в сутки. Корректировка часов ИВК выполняется автоматически, от УСВ-3.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика электроэнергии, отражаются в его журнале событий.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов указанных устройств, отражаются в журнале событий сервера.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000» версии не ниже 1.0.0.0, в состав которого входят модули, указанные в таблице 1. ПО Пирамида 2000 обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое ПО Пирамида 2000.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	«Пирамида 2000»
	Metrology.dll
Номер версии (идентификационный номер) ПО	1.0.0.0
Цифровой идентификатор ПО	52e28d7b608799bb3ccea41b548d2c83
Алгоритм вычисления цифрового идентификатора ПО	MD5

ПО «Пирамида 2000» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблицах 2, 3.

Таблица 2 - Состав ИК АИИС КУЭ

	Наименование объекта	Измерительные компоненты			
Номер ИК		TT	ТН	Счётчик	Устройство синхронизации времени
1	2	3	4	5	6
1	ПС 110/10 кВ «ДОЗ», КРУН- 10 кВ, 1 сш 10 кВ, яч.7, ф.Экстрол-1	ТОЛ-10-I Кл. т. 0,5S Ктт 300/5 Рег. № 15128-07	ЗНОЛ.06 Кл. т. 0,5 Ктн 10000:√3/100:√3 Рег. № 3344-08	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 27524-04	УСВ-3,
2	ПС 110/10 кВ «ДОЗ», КРУН- 10 кВ, 2 сш 10 кВ, яч.17, ф.Экстрол-2	ТОЛ-10-I Кл. т. 0,5S Ктт 300/5 Рег. № 15128-07	ЗНОЛ.06 Кл. т. 0,5 Ктн 10000:√3/100:√3 Рег. № 3344-08	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 27524-04	Per. № 64242-16

Примечания:

- 1 Кл. т. класс точности, Ктт коэффициент трансформации трансформаторов тока, Ктн коэффициент трансформации трансформаторов напряжения, Рег. № регистрационный номер в Федеральном информационном фонде.
- 2 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 3, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик.
 - 3 Допускается замена УСВ-3 на однотипные утвержденного типа.
- 4 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Таблица 3 - Основные метрологические характеристики ИК АИИС КУЭ

Цоморо	Вид электроэнергии	Метрологические характеристики ИК	
Номера ИК		Границы основной	Границы погрешности в
YIK		погрешности (±δ), %	рабочих условиях ($\pm \delta$), %
	активная	1,1	3,0
1			
	реактивная	2,6	5,6
	активная	1,1	3,0
2			
	реактивная	2,6	5,6
Пределы допускаемой погрешности СОЕВ, с			±5

Продолжение таблицы 3

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд, $I=0.02I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1, 2 от минус 20 до плюс 30 °C.

Основные технические характеристики ИК приведены в таблице 4.

Таблица 4 – Основные технические характеристики ИК

Таблица 4 – Основные технические характеристики ИК				
Наименование характеристики	Значение			
Количество измерительных каналов	2			
Нормальные условия:				
параметры сети:				
- напряжение, % от U _{ном}	от 99 до 101			
- Tok, $\%$ ot I_{hom}	от 100 до 120			
- частота, Гц	от 49,85 до 50,15			
- коэффициент мощности cosj	0,9			
- температура окружающей среды, °С	от +21 до +25			
Условия эксплуатации:				
параметры сети:				
- напряжение, % от U _{ном}	от 90 до 110			
- Tok, % ot I_{hom}	от 2 до 120			
- коэффициент мощности	от 0,5 инд. до 0,8 емк.			
- частота, Гц	от 49,6 до 50,4			
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70			
- температура окружающей среды в месте расположения				
электросчетчиков, °С:	от -40 до +65			
- температура окружающей среды в месте расположения				
сервера, °С	от +10 до +60			
Надежность применяемых в АИИС КУЭ компонентов:				
Электросчетчики:				
- среднее время наработки на отказ, ч, не менее	90000			
- среднее время восстановления работоспособности, ч	2			
Сервер:				
- среднее время наработки на отказ, ч, не менее	70000			
- среднее время восстановления работоспособности, ч	1			
Глубина хранения информации				
Электросчетчики:				
- тридцатиминутный профиль нагрузки в двух направлениях,				
сут, не менее	114			
- при отключении питания, лет, не менее	40			
Сервер:				
- хранение результатов измерений и информации состояний средств				
измерений, лет, не менее	3,5			

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике с фиксацией даты и времени до и после коррекции часов счетчика;
- журнал ИВК:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчиках, сервере с фиксацией даты и времени до и после коррекции часов указанных устройств.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформатор тока	ТОЛ-10-І	6
Трансформатор напряжения	3НОЛ.06	6
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	2
Устройство синхронизации времени	УСВ-3	1
Программное обеспечение	«Пирамида 2000»	1
Методика поверки	МП 027-2018	1
Паспорт-Формуляр	-	1

Поверка

осуществляется по документу МП 027-2018 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЗЭМ «Экстрол». Методика поверки», утвержденному ООО «Спецэнегопроект» 20.07.2018 г.

Основные средства поверки:

- ТТ в соответствии с ГОСТ 8.217-2003 ГСИ. Трансформаторы тока. Методика поверки;
- TH в соответствии с ΓOCT 8.216-2011 ΓCU . Трансформаторы напряжения. Методика поверки;
- по МИ 3195-2009 ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей;
- по МИ 3196-2009 ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03. Руководство по эксплуатации. Методика поверки» ИЛГШ.411151.124 РЭ1, согласованному с ФБУ «Нижегородский ЦСМ» 10.09.2004 г.;
- УСВ-3 по документу РТ-МП-3124-441-2016 «Устройства синхронизации времени УСВ-2. Методика поверки», утвержденному ФБУ «Ростест-Москва» 23.03.2016 г.;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 46656-11;
- термогигрометр CENTER (мод. 315): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %, Per. № 22129-09.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЗЭМ «Экстрол», аттестованном ООО «Спецэнергопроект», аттестат об аккредитации № RA.RU.312236 от 20.07.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЗЭМ «Экстрол»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЕЭС-Гарант» (ООО «ЕЭС-Гарант»)

ИНН 5024104671

Адрес: 620075, Свердловская область, г. Екатеринбург, ул. Кузнечная, д. 92

Юридический адрес: 143421, Московская область, Красногорский район, 26 км автодороги «Балтия», комплекс ООО «ВегаЛайн», строение 3

Телефон: (495) 980-59-00 Факс: (495) 980-59-08

Заявитель

Общество с ограниченной ответственностью «Стройэнергетика»

(ООО «Стройэнергетика»)

Адрес: 129337, г. Москва, ул. Красная Сосна, д. 20, стр. 1, комн. 4

Телефон: (926) 786-90-40

E-mail: Stroyenergetika@gmail.com

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Адрес: 119119, г. Москва, Ленинский пр. д. 42, корп. 6, этаж 2, ком. 12

Юридический адрес: 111024, г. Москва, ул. Авиамоторная, д. 50, стр. 2, пом. XIV, комн. 11

Телефон: (495) 410-28-81

E-mail: gd.spetcenergo@gmail.com

Аттестат аккредитации ООО «Спецэнергопроект» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312426 от 30.01.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2018 г.