ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Птицефабрика Краснодонская»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Птицефабрика Краснодонская» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее - ИИК), которые включают в себя трансформаторы тока (далее – ТТ), трансформаторы напряжения (далее – ТН) и счетчики активной и реактивной электроэнергии (далее — счётчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень – информационно-вычислительный комплекс (далее - ИВК) АО «Птицефабрика Краснодонская», включающий в себя каналообразующую аппаратуру, сервер баз данных (далее - БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), устройство синхронизации времени типа УСВ-3 (далее – УСВ-3) и программное обеспечение (далее – ПО) ПК «Энергосфера».

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО «СО ЕЭС».

Измерительные каналы (далее – ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает сервер БД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ-3, на основе приемника сигналов точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов

УСВ-3 не более ± 1 с. УСВ-3 обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится при расхождении часов сервера БД и времени приемника более чем на ± 1 с, пределы допускаемой абсолютной погрешности синхронизации часов сервера БД и времени приемника не более ± 5 с. Коррекция часов счетчиков выполняется автоматически при расхождении часов счетчика и сервера БД более чем на ± 2 с, но не чаще 1 раза в сутки.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии не ниже 7.0, в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	ПК «Энергосфера»		
-	Библиотека pso_metr.dll		
Номер версии (идентификационный номер) ПО	1.1.1.1		
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав ИК АИИС КУЭ и их основные метрологические характеристики

Номер ИК	Наименовани е объекта	Измерительные компоненты			30 ции		Метрологические характеристики ИК	
		TT	ТН	Счётчик	Устройство Синхронизации Времени	Вид электроэнергии	Границы основной погрешности, $(\pm\delta)$, %	Границы погрешности в рабочих условиях, $(\pm\delta)$, %
1	2	3	4	5	6	7	8	9
1	ПС 110кВ Донская, КРУН-10кВ, 1 СШ, яч.25, ВЛ-10кВ №25	ТОЛ-СЭЩ-10 Кл. т. 0,5S Ктт 600/5 Рег. № 51623-12	НОЛ-СЭЩ-10 Кл. т. 0,5 Ктн 10000/√3:100/√3 Рег. № 35955-07	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	2	активная реактивная	1,1 2,7	3,0 4,7
2	ПС 110кВ Донская, КРУН-10кВ, 1 СШ, яч.17, ВЛ-10кВ №17	ТЛМ-10 Кл. т. 0,5 Ктт 200/5 Рег. № 2473-69	НОЛ-СЭЩ-10 Кл. т. 0,5 Ктн 10000/√3:100/√3 Рег. № 35955-07	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	YCB-3 Per.№ 51644-12	активная реактивная	1,1 2,7	3,0 4,7
3	ПС 110кВ Донская, КРУН-10кВ, 2 СШ, яч.4, ВЛ-10кВ №4	ТЛМ-10 Кл. т. 0,5 Ктт 200/5 Рег. № 2473-69	НОЛ-СЭЩ-10 Кл. т. 0,5 Ктн 10000/√3:100/√3 Рег. № 35955-07	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	d.	активная реактивная	1,1 2,7	3,0 4,7

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
4	ПС 110кВ Донская, КРУН-10кВ, 2 СШ, яч.30, ВЛ-10кВ №30	ТОЛ-СЭЩ-10 Кл. т. 0,5S Ктт 600/5 Рег. № 51623-12	НОЛ-СЭЩ-10 Кл. т. 0,5 Ктн 10000/√3:100/√3 Рег. № 35955-07	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	4-12	активная реактивная	1,1 2,7	3,0 4,7
5	ВЛ-10кВ №17, оп.127, ПКУ-1 10кВ	ТОЛ-10 Кл. т. 0,5S Ктт 400/5 Рег. № 47959-16	ЗНОЛП-10 Кл. т. 0,5 Ктн 10000/√3:100/√3 Рег. № 46738-11	СЭТ-4ТМ.03М Кл. т. 0,5S/1,0 Рег. № 36697-17	YCB-3 Per.№ 5164	активная реактивная	1,2 2,8	3,6 6,1
6	ВЛ-10кВ №4, оп.103, ПКУ- 2 10кВ	ТОЛ-10 Кл. т. 0,5S Ктт 400/5 Рег. № 47959-16	ЗНОЛП-10 Кл. т. 0,5 Ктн 10000/√3:100/√3 Рег. № 46738-11	СЭТ-4ТМ.03М Кл. т. 0,5S/1,0 Рег. № 36697-17	d	активная реактивная	1,2 2,8	3,6 6,1
	Погрешность СОЕВ, с					±5		

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана $\cos j = 0.8$ инд I=0.02(0.05) $I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1, 2, 3, 4 от плюс 10 до плюс 30 °C; для ИК №№ 5, 6 от минус 12 до плюс 35 °C.
- 4 В Таблице 2 и далее по тексту приняты следующие сокращения (обозначения): Кл. т. класс точности, Ктт коэффициент трансформации трансформатора напряжения Рег. № регистрационный номер в Федеральном информационном фонде.
- 5 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 6 Допускается замена УСВ-3 на аналогичные утвержденных типов.
- 7 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество измерительных каналов	6
Нормальные условия:	
параметры сети:	
- напряжение, % от $\mathrm{U}_{\scriptscriptstyle{\mathrm{HOM}}}$	от 99 до 101
- Tok, $\%$ ot I_{hom}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, $\%$ от $\mathrm{U}_{\scriptscriptstyle{HOM}}$	от 90 до 110
- ток, $\%$ от $I_{\text{ном}}$	от 2 до 120
- коэффициент мощности	от 0,5 $_{\rm инд}$ до 0,8 $_{\rm емк}$
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +40
- температура окружающей среды в месте расположения	
электросчетчиков, °С:	от -40 до +60
- температура окружающей среды в месте расположения сервера, °C	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчика СЭТ-4ТМ.03М	220000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сут, не менее	114
- при отключении питания, лет, не менее	40
Сервер:	
- хранение результатов измерений и информации состояний	,
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике с фиксацией даты и времени до и после коррекции часов счетчика;

- журнал ИВК:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчиках, сервере с фиксацией даты и времени до и после коррекции часов указанных устройств;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформатор тока	ТОЛ-СЭЩ-10	4
Трансформатор тока	ТЛМ-10	4
Трансформатор тока	ТОЛ-10	6
Трансформатор напряжения	НОЛ-СЭЩ-10	6
Трансформатор напряжения	3НОЛП-10	6
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	6
Устройство синхронизации времени	УСВ-3	1
ПО	ПК «Энергосфера»	1
Методика поверки	МП 059-2018	1
Паспорт-Формуляр	ЕГ.01.043-ПФ	1

Поверка

осуществляется по документу МП 059-2018 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Птицефабрика Краснодонская». Методика поверки», утвержденному ООО «Спецэнегопроект» 21.09.2018 г. Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ $8.217-2003 \ \mbox{«ГСИ.}$ Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу ИЛГШ.411152.145РЭ1 «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. «Руководство по эксплуатации», Часть 2 «Методика поверки», утверждённому ФБУ «Нижегородский ЦСМ» $03.04.2017~\Gamma$:
- устройство синхронизации времени УСВ-3 по документу «Инструкция. Устройства синхронизации времени УСВ-3. Методика поверки. ВЛСТ.240.00.000МП» утвержденным руководителем Φ ГУП «ВНИИ Φ ТРИ» В 2012 г.;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 46656-11;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-02;
- термогигрометр CENTER (мод. 315): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %, Рег. № 22129-09.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Птицефабрика Краснодонская», аттестованном ООО «Спецэнергопроект», аттестат об аккредитации № RA.RU.312236 от 20.07.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Птицефабрика Краснодонская»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЕЭС-Гарант»

(ООО «ЕЭС-Гарант»)

ИНН 5024104671

Адрес: 143421, Московская область, Красногорский район, 26 км автодороги «Балтия», комплекс ООО «ВегаЛайн», стр. 3

Телефон: 8 (495) 980-59-00 Факс: 8 (495) 980-59-08

Заявитель

Общество с ограниченной ответственностью «Стройэнергетика» (ООО «Стройэнергетика»)

Адрес: 129337, г. Москва, ул. Красная Сосна, д. 20, стр. 1, комн. 4

Телефон: 8 (926) 786-90-40

E-mail: Stroyenergetika@gmail.com

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, этаж 4, пом. I, комн. 6, 7

Юридический адрес: 111024, г. Москва, ул. Авиамоторная, д. 50, стр. 2, пом. XIV, комн. 11

Телефон: 8 (985) 992-27-81

E-mail: <u>info.spetcenergo@gmail.com</u>

Аттестат об аккредитации ООО «Спецэнергопроект» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312429 от 30.01.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

A.B. K	улешов
--------	--------

М.п. «____»____2018 г.