ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная АСУТП установки стабилизации нафты тит. 091/2 AO «ТАНЕКО»

Назначение средства измерений

Система измерительная АСУТП установки стабилизации нафты тит. 091/2 AO «ТАНЕКО» (далее – ИС) предназначена для измерений параметров технологического процесса (давления, перепада давления, уровня, температуры, объемного расхода, массового расхода, виброскорости, нижнего концентрационного предела распространения пламени (далее – НКПР), концентрации, плотности), формирования сигналов управления и регулирования.

Описание средства измерений

Принцип действия ИС основан на непрерывном измерении, преобразовании и обработке при помощи комплекса измерительно-вычислительного СЕNTUM модели VP (регистрационный номер в Федеральном информационном фонде (далее – регистрационный номер) 21532-14) (далее – CENTUM VP) и комплекса измерительно-вычислительного и управляющего противоаварийной защиты и технологической безопасности ProSafe-RS (регистрационный номер 31026-11) (далее – ProSafe-RS) входных сигналов, поступающих по измерительным каналам (далее – ИК) от первичных и промежуточных измерительных преобразователей (далее – ИП).

ИС осуществляет измерение параметров технологического процесса следующим образом:

- первичные ИП преобразуют текущие значения параметров технологического процесса в аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА;
- аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА от первичных ИП поступают на входы преобразователей измерительных серии Н модели HiC2025 (регистрационный номер 40667-09) (далее HiC2025) и далее на модули ввода аналоговых сигналов AAI143 CENTUM VP (далее AAI143) и многофункциональные модули ввода аналоговых сигналов SAI143 ProSafe-RS (далее SAI143) (часть сигналов поступает на модули ввода аналоговых сигналов без барьеров искрозащиты);
- сигналы управления и регулирования (аналоговые сигналы силы постоянного тока от 4 до 20 мА) генерируются модулями вывода AAI543 CENTUM VP (далее AAI543) через преобразователи измерительные серии Н модели HiC2031 (регистрационный номер 40667-09) (далее HiC2031) (часть сигналов поступает с модулей вывода аналоговых сигналов без барьеров искрозащиты).

Цифровые коды, преобразованные посредством модулей ввода аналоговых сигналов в значения физических параметров технологического процесса, отображаются на мнемосхемах мониторов операторских станций управления в виде числовых значений, гистограмм, трендов, текстов, рисунков и цветовой окраски элементов мнемосхем, а также интегрируется в базу данных ИС.

По функциональным признакам ИС делится на две независимые подсистемы: распределенная система управления технологическим процессом и система противоаварийной защиты. ИС включает в себя также резервные ИК.

Состав средств измерений, входящих в состав первичных ИП ИК, указан в таблице 1.

Таблица 1 – Средства измерений, входящие в состав первичных ИП ИК

Наименование	Редства измерений, входящие в состав первичных ИП Наименование первичного ИП ИК	Регистрационный
ИК	паименование первичного илт ик	номер
1	2	3
	Преобразователь давления измерительный EJX модели EJX 530 (далее – EJX 530)	28456-04
	Преобразователь давления измерительный EJX модели EJX 530 (далее – ПДИ EJX 530)	28456-09
ИК давления	Преобразователь (датчик) давления измерительный ЕЈ* модификации ЕЈХ (серии А) модели 530 (далее – ЕЈХ 530А)	59868-15
	Преобразователь давления измерительный ЕЈХ модели ЕЈХ 430 (далее – ЕЈХ 430)	28456-04
	Преобразователь давления измерительный EJX модели EJX 430 (далее – ПДИ EJX 430)	28456-09
	Преобразователь давления измерительный EJA модели EJA 530 (далее – EJA 530)	14495-09
	Преобразователь давления измерительный EJX модели EJX 110 (далее – EJX 110)	28456-09
ИК перепада давления	Преобразователь (датчик) давления измерительный ЕЈ* модификации ЕЈХ (серии А) модели 110 (далее – ЕЈХ 110А)	59868-15
	Преобразователь давления измерительный EJX модели EJX 120 (далее – EJX 120)	28456-09
	Уровнемер буйковый BW 25 (далее – BW 25)	48217-11
	Уровнемер LLT-MS (далее – LLT-MS)	56340-14
	Уровнемер емкостный VEGACAL 6* модификации VEGACAL 62 (далее – VEGACAL 62)	32242-12
	Уровнемер контактный микроволновый VEGAFLEX 6* модификации VEGAFLEX 61 (далее – VEGAFLEX 61)	27284-09
ИК уровня	Уровнемер контактный микроволновый VEGAFLEX 6* модификации VEGAFLEX 66 (далее – VEGAFLEX 66)	27284-09
	Уровнемер микроволновый контактный VEGAFLEX 8* модификации VEGAFLEX 81 (далее – VEGAFLEX 81)	53857-13
	Уровнемер микроволновый контактный VEGAFLEX 8* модификации VEGAFLEX 86 (далее – VEGAFLEX 86)	53857-13
	Термопреобразователь сопротивления платиновый серии 65 (далее – ТСП 65)	22257-05
	Термопреобразователь сопротивления платиновый серии 65 (далее – TC 65)	22257-11
ИК температуры	Термометр сопротивления серии 90 модели 2820 (далее – TC 90.2820)	38488-08
	Термопреобразователь сопротивления платиновый серии 90 модели 2820 (далее – ТСП 90.2820)	49521-12
	Термометр сопротивления платиновый серии 90 модели 2109 (далее – ТСП 90.2109)	41742-09

1	2	3
	Термопреобразователь сопротивления Pt100 (далее – TC Pt100)	35649-07
	Термометр сопротивления РТ100 (далее – РТ100)	41646-09
	Преобразователь термоэлектрический серии TC модели TC10 (далее – TC10)	49520-12
	Преобразователь измерительный серии iTEMP модели TMT82 (далее – TMT82)	50138-12
	Преобразователь термоэлектрический серии TC модели TC88 (далее – TC88)	49520-12
	Термопреобразователь сопротивления серии TR модификации TR12-B (далее – TR12-B)	47279-11
	Термопреобразователь сопротивления платиновый серии TR модели TR24 (далее – TR24)	49519-12
	Термопреобразователь сопротивления платиновый серии TR модели TR61 (далее – TR61)	49519-12
	Преобразователь измерительный серии iTEMP TMT модели TMT182 (далее – TMT182)	57947-14
	Термопреобразователь сопротивления платиновый серии TR модели TR88 (далее – TR88)	49519-12
ИК	Термопреобразователь сопротивления платиновый серии WTH модели 160-250 (далее – WTH 160-250)	44778-10
температуры	Термопреобразователь сопротивления платиновый серии WTH модели 280-400 (далее – WTH 280-400)	44778-10
	Термометр сопротивления ДТС модели 044 (далее – ДТС 044)	28354-10
	Термометр сопротивления платиновый ТСП 002 модификации ТСП 002-06 (далее – ТСП 002-06)	41891-09
	Преобразователь термоэлектрический ТХА Метран-200 модели ТХА Метран-241 (далее – ТХА Метран-241)	19985-00
	Преобразователь измерительный 248 (далее – ПИ 248)	28034-05
	Преобразователь измерительный Rosemount 248 (далее – Rosemount 248)	48988-12
	Преобразователь измерительный 644 (далее – ПИ 644)	14683-09
	Преобразователь измерительный серии dTRANS модификации T01 (далее – dTRANS T01)	54307-13
	Преобразователь измерительный сигналов от термопар и термометров сопротивления dTRANS T01 типа 707016 (далее – dTRANS T01 707016)	24931-08

Продолжение т 1	2	3
	Преобразователь измерительный PR модели 6335 (далее – PR 6335)	51059-12
	Преобразователь измерительный серии iTEMP TMT модели TMT 112 (далее – TMT 112)	39840-08
	Преобразователь измерительный серии YTA модели YTA 110 (далее – YTA 110)	25470-03
ИК	Преобразователь измерительный серии YTA модели YTA 320 (далее – YTA 320)	25470-03
температуры	Преобразователь температуры Метран-280 модели Метран-286 (далее – Метран-286)	23410-08
	Преобразователь температуры Метран-280 модели Метран-286 (далее – ПТ Метран-286)	23410-13
	Преобразователь температурный измерительный ТТН 300 для монтажа в головку датчика (далее – ТТН 300)	42426-09
	Счетчик-расходомер электромагнитный ADMAG модификации AXF (далее – ADMAG AXF)	17669-09
ИК объемного расхода	Расходомер-счетчик вихревой объемный YEWFLO DY (далее – YEWFLO DY)	17675-09
	Расходомер-счетчик газа и пара модели GF868 (далее – GF868)	50009-12
	YEWFLO DY	17675-09
ИК массового расхода	Счетчик-расходомер массовый кориолисовый ROTAMASS модификации RCCS исполнения RCCS32 с вторичным преобразователем RCCF31 (далее – RCCS32/RCCF31)	27054-09
ИК	Преобразователь вибрации серии VIBTOTECTOR модификации VIB 5.736 (далее – VIB 5.736)	50861-12
виброскорости	Вибропреобразователь пьезоэлектрический с предусилителем серии ВК-310 типа ВК-310С (далее – ВК-310С)	22234-01
	Датчик-газоанализатор стационарный серии ДГС ЭРИС-200 модели ДГС ЭРИС-210 (далее – ЭРИС-210)	44404-10
ИК НКПР	Датчик оптический инфракрасный Dräger модели Polytron 2IR (далее – Polytron 2IR)	46044-10
	Датчик-газоанализатор стационарный ДГС ЭРИС- 210 (далее – ДГС ЭРИС-210)	61055-15
	ДГС ЭРИС-210	61055-15
	Датчик газов электрохимический Dräger Polytron 2/2 XP TOX/L/3000/7000 модификации Dräger Polytron 2 XP TOX (далее – Polytron 2 XP TOX)	39018-08
ИК концентрации	Датчик газов электрохимический Dräger Polytron 2/2 XP TOX/L/3000/7000 модификации Dräger Polytron 3000 (далее – Polytron 3000)	39018-08
	Анализатор содержания нефтепродуктов в воде промышленный Hydrosense 2410 (далее – Hydrosense 2410)	47662-11

1	2	3
ИК концентрации	Газоанализатор кислорода и оксида углерода СОМТЕС исполнения СОМТЕС 6000 (далее – СОМТЕС 6000)	49127-12
концентрации	Газоанализатор кислорода ОХІТЕС исполнения ОХІТЕС 5000 (далее – ОХІТЕС 5000)	28385-11
ИК плотности	Датчик плотности серии L-Dens 4X7 поточный исполнения 427 T (далее – L-Dens 427 T)	63202-16

ИС выполняет следующие функции:

- автоматизированное измерение, регистрация, обработка, контроль, хранение и индикация параметров технологического процесса;
- предупредительная и аварийная сигнализация при выходе параметров технологического процесса за установленные границы и при обнаружении неисправности в работе оборудования;
- управление технологическим процессом в реальном масштабе времени; противоаварийная защита оборудования установки;
- отображение технологической и системной информации на операторской станции управления;
 - накопление, регистрация и хранение поступающей информации;
 - самодиагностика:
 - автоматическое составление отчетов и рабочих (режимных) листов;
- защита системной информации от несанкционированного доступа программным средствам и изменения установленных параметров.

Программное обеспечение

Программное обеспечение (далее – ПО) ИС обеспечивает реализацию функций ИС.

Защита ПО ИС от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу осуществляется путем идентификации, защиты от несанкционированного доступа.

Идентификационные данные ПО ИС приведены в таблице 2.

Таблица 2 – Идентификационные данные ПО ИС

Иналитификанизмина дамина (призмаки)	Значение		
Идентификационные данные (признаки)	CENTUM VP	ProSafe-RS	
Идентификационное наименование ПО	CENTUM VP	ProSafe-RS	
		Workbrench	
Номер версии (идентификационный номер) ПО	не ниже R4.03	не ниже R2.03	
Цифровой идентификатор ПО	_	_	

ПО ИС защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров путем введения логина и пароля, ведения доступного только для чтения журнала событий.

Уровень защиты ПО ИС «средний» в соответствии с Р 50.2.077–2014.

Метрологические и технические характеристики

Основные технические характеристики ИС представлены в таблице 3.

Таблица 3 – Основные технические характеристики ИС

Наименование характеристики	Значение
Количество входных ИК, не более	1120
Количество выходных ИК, не более	160
Параметры электрического питания:	
- напряжение переменного тока, В	$380^{+15\%}_{-20\%}$; $220^{+10\%}_{-15\%}$
- частота переменного тока, Гц	50±1
Потребляемая мощность, кВ·А, не более	25
Габаритные размеры отдельных шкафов, мм, не более:	
- ширина	1000
- высота	2000
- глубина	1000
Масса отдельных шкафов, кг, не более	400
Условия эксплуатации:	
а) температура окружающей среды, °С:	
- в месте установки вторичной части ИК	от +15 до +30
- в местах установки первичных ИП ИК	от -40 до +50
б) относительная влажность, %, не более	от 30 до 80,
	без конденсации влаги
в) атмосферное давление, кПа	от 84,0 до 106,7 кПа

Примечание – ИП, эксплуатация которых в указанных диапазонах температуры окружающей среды и относительной влажности не допускается, эксплуатируются при температуре окружающей среды и относительной влажности, указанных в технической документации на данные ИП.

Метрологические характеристики ИК ИС приведены в таблице 4.

Таблица 4 – Метрологические характеристики ИК ИС

	Матрологические характеристики и ИС Метрологические характеристики измерительных компонентов ИК							
Метрологические характеристики ИК		Первичный ИП		Вторичный ИП				
Наимено-вание ИК	Диапазоны измерений	Пределы допускаемой основной	Тип (выходной сигнал)	Пределы допускаемой основной погрешности	Тип барьера искро- защиты	Типа модуля ввода/вывода	Пределы допускаемой основной погрешности	
1	2	погрешности 3	4	5	<u>защиты</u> 6	7	1101 решности 8	
	от 0 до 0,5 МПа	g от ±0,20 до ±0,54 %	EJX 530	g от ±0,10 до ±0,46 %	HiC2025	ААІ143 или	g: ±0,15 %	
	от -0,1 до 2 МПа ¹⁾	см. примечание 3	(от 4 до 20 мА)			SAI143	3 1, 1 11	
ИК давления	от 0 до 160 кПа; от 0 до 1000 кПа; от 0 до 0,2 МПа; от 0 до 0,3 МПа; от 0 до 0,4 МПа; от 0 до 0,6 МПа; от 0 до 1 МПа; от 0 до 2 МПа; от 0 до 2 МПа; от 0 до 4 МПа; от 0 до 5 МПа; от 0 до 6 МПа; от 0 до 6 МПа; от 0 до 10 МПа	g от ±0,20 до ±0,54 %	ПДИ ЕЈХ 530 (от 4 до 20 мА)	g от ±0,10 до ±0,46 %	HiC2025	ААІ143 или SAI143	g ±0,15 %	
	200 кПа ¹⁾ ; от -0,1 до 2 МПа ¹⁾ ; от -0,1 до 10 МПа ¹⁾	см. примечание 3						

1	ние таолицы 4 2	3	4	5	6	7	8
ИК давления	от 0 до 0,015 МПа; от 0 до 0,25 МПа; от 0 до 0,3 МПа; от 0 до 0,4 МПа; от 0 до 0,6 МПа; от 0 до 1,5 МПа; от 0 до 1,6 МПа; от 0 до 2,5 МПа; от 0 до 4 МПа; от 0 до 5,7 МПа; от 0 до 6,1 МПа; от 0 до 6,8 МПа; от 0 до 6,8 МПа; от 0 до 8 МПа; от 0 до 8 МПа;	g от ±0,18 до ±0,26 %	EJX 530A (от 4 до 20 мА)	g от ±0,04 до ±0,18 %	HiC2025	AAI143 или SAI143	g: ±0,15 %
	от -100 до 200 кПа ¹⁾ ; от -0,1 до 2 МПа ¹⁾ ; от -0,1 до 10 МПа ¹⁾	см. примечание 3					
	от 0 до 0,15 МПа; от 0 до 0,3 МПа от -100 до	g от ±0,18 до ±0,69 %	EJX 430 (от 4 до 20 мА)	g от ±0,04 до ±0,6 %	HiC2025	AAI143 или SAI143	g ±0,15 %
	500 кПа ¹⁾	см. примечание 3	· ,				
	от 0 до 25 кПа	g от ±0,18 до ±0,69 %	ПДИ ЕЈХ 430	g от ±0,04 до ±0,6 %	HiC2025	AAI143 или SAI143	g: ±0,15 %
	от -100 до 500 кПа ¹⁾	см. примечание 3	(от 4 до 20 мА)	g, 01 ±0,0+ д0 ±0,0 %			y =0,13 /0
	от 0 до 0,6 МПа	g от ±0,28 до ±0,69 %	EJA 530	g: от ±0,2 до ±0,6 %	HiC2025	AAI143 или	g: ±0,15 %
	от 0 до 2 МПа ¹⁾	см. примечание 3	(от 4 до 20 мА)	-		SAI143	

1	2	3	4	5	6	7	8
ИК перепада давления	от 0 до 1,25 кПа; от 0 до 4,7 кПа; от 0 до 7,1 кПа; от 0 до 10 кПа; от 0 до 11 кПа; от 0 до 16 кПа; от 0 до 160 кПа	g от ±0,18 до ±0,69 %	ЕЈХ 110 (от 4 до 20 мА)	g от ±0,04 до ±0,6 %	HiC2025	AAI143 или SAI143	g ±0,15 %
	от -10 до 10 кПа ¹⁾ ; от -100 до 100 кПа ¹⁾ ; от -500 до 500 кПа ¹⁾	см. примечание 3					
	от 0 до 20 кПа; от 0 до 25 кПа; от 0 до 30 кПа; от 0 до 40 кПа; от 0 до 50 кПа; от 0 до 0,027 МПа; от 0 до 0,09 МПа от -100 до	g от ±0,18 до ±0,69 %	EJX 110A (от 4 до 20 мА)	g от ±0,04 до ±0,6 %	HiC2025	AAI143 или SAI143	g ±0,15 %
	100 до 100 кПа ¹⁾	см. примечание 3					
	от -100 до 30 Па; от -600 до 30 Па; от -1000 до 30 Па	g от ±0,20 до ±0,23 %	ЕЈХ 120 (от 4 до 20 мА)	g от ±0,090 до ±0,135 %	HiC2025	AAI143 или SAI143	g ±0,15 %
	от -1 до 1 кПа ¹⁾	см. примечание 3					

1	2	3	4	5	6	7	8
	от 300 до 656 мм (шкала от 0 до 356 мм)	g ±27,82 %		g₁: ±1,5 %		AAI143 или SAI143	
	от 300 до 660 мм (шкала от 0 до 360 мм)	g: ±27,51 %					
	от 300 до 700 мм (шкала от 0 до 400 мм)	g: ±24,76 %	ВW 25 (от 4 до 20 мА)		HiC2025		g ±0,15 %
	от 300 до 855 мм (шкала от 0 до 555 мм)	g: ±17,87 %					
ИК уровня	от 300 до 1100 мм (шкала от 0 до 800 мм)	g ±12,45 %					
	от 300 до 1120 мм (шкала от 0 до 820 мм)	g ±12,15 %					
	от 300 до 1140 мм (шкала от 0 до 840 мм)	g ±11,87 %					
	от 300 до 1150 мм (шкала от 0 до 850 мм)	g: ±11,74 %					
	от 300 до 1520 мм (шкала от 0 до 1220 мм)	g ±8,37 %					

1	2	3	4	5	6	7	8
	от 300 до 2000 мм (шкала от 0 до 1700 мм)	g ±6,47 %	BW 25 (от 4 до 20 мА)	g₁: ±1,5 %	HiC2025	AAI143 или SAI143	g ±0,15 %
	от 20 до 380 мм (шкала от 0 до 360 мм)	Δ: ±3,36 мм	LLT-MS (от 4 до 20 мА)	До 5 м включ.: Δ : ± 3 мм; св. 5 м: d: $\pm 0,06$ %	HiC2025	AAI143 или SAI143	g ±0,15 %
	от 20 до 6000 мм	см. примечание 3					
	от 135 до 205 мм; от 0 до 6000 мм ¹⁾	см. примечание 3	VEGACAL 62 (от 4 до 20 мА)	d: ±0,25 %	HiC2025	AAI143 или SAI143	g ±0,15 %
	от 310 до 1123 мм	Δ : ±3,57 mm					g ±0,15 %
ИК уровня	от 310 до 1280 мм	Δ: ±3,67 мм					
	от 320 до 670 мм	Δ: ±3,36 mm					
	от 320 до 676 мм	Δ: ±3,36 mm					
	от 320 до 1133 мм	Δ : ±3,57 mm					
	от 320 до 1290 мм	Δ : ±3,67 mm	VEGAFLEX 61	До 20 м включ.:		ААІ143 или	
	от 320 до 1540 мм	Δ : ±3,87 mm	(от 4 до 20 мА)	Δ: ±3 мм;	HiC2025	SAI143	
	от 320 до 1770 мм	Δ: ±4,08 мм	(01 + Д0 20 M/1)	св. 20 м: d: ±0,015 %		5/11143	
	от 320 до 2220 мм	Δ: ±4,56 мм					
	от 330 до 2365 мм	Δ: ±4,71 мм	_				
	от 350 до 2850 мм	Δ: ±5,29 мм					
	от 400 до 1000 мм	Δ : $\pm 3,45$ mm					
	от 0,08 до 32 м ¹⁾	см. примечание 3					

1	2	3	4	5	6	7	8
	от 250 до 3273 мм	Δ: ±5,99 мм					
	от 250 до 3811 мм	Δ : ±6,74 мм					
	от 260 до 3283 мм	Δ : ±5,99 мм	VEGAFLEX 66 (от 4 до 20 мА)	До 20 м включ. Δ : ±3 мм; св. 20 м d: ±0,015 %			
	от 310 до 4460 мм	Δ : $\pm 7,61$ mm			HiC2025	AAI143 или SAI143	g ±0,15 %
	от 320 до 4470 мм	Δ : $\pm 7,61$ mm					
	от 2290 до 3970 мм	Δ: ±4,31 мм					
ИК уровня	от 2320 до 4010 мм	Δ: ±4,33 мм					
	от 2400 до 5930 мм	Δ : $\pm 6,7$ mm					
	от 2450 до 5930 мм	Δ : ±6,63 мм					
	от 0,08 до 32 м ¹⁾	см. примечание 3					
	от 260 до 2260 мм	Δ : ±6,42 mm ² ; Δ : ±3,97 mm ³	VEGAFLEX 81 (ot 4 do 20 mA)	Δ : ±5 mm ²⁾ ; Δ : ±2 mm ³⁾	HiC2025	AAI143 или SAI143	g ±0,15 %
	от 0,03 до 6 м ¹⁾	см. примечание 3	(61 · A6 20 ·······)				

1	2	3	4	5	6	7	8
	от 250 до 1650 мм	Δ : ±5,97 mm ²⁾ ; Δ : ±3,19 mm ³⁾					
	от 260 до 650 мм	Δ : ±5,54 mm ² ; Δ : ±2,3 mm ³					
	от 260 до 1460 мм	Δ : ±5,85 mm ² ; Δ : ±2,96 mm ³					
	от 260 до 2330 мм	Δ : ±6,48 mm ² ; Δ : ±4,07 mm ³					
ИК уровня	от 260 до 2910 мм	Δ : ±7,03 mm ² ; Δ : ±4,9 mm ³	VEGAFLEX 86 (от 4 до 20 мА)	Δ : ±5 mm ²⁾ ; Δ : ±2 mm ³⁾	HiC2025	AAI143 или SAI143	g ±0,15 %
	от 260 до 3910 мм	Δ : ±8,16 mm ² ; Δ : ±6,42 mm ³	(01 + 40 20 M/1)	ZA, ±Z WIWI			
	от 260 до 5560 мм	Δ : ±10,34 mm ²⁾ ; Δ : ±9,02 mm ³⁾					
	от 1400 до 2650 мм	Δ : ±5,88 mm ² ; Δ : ±3,02 mm ³					
	от 1800 до 2900 мм	Δ : ±5,8 mm ²⁾ ; Δ : ±2,86 mm ³⁾					
	от 0,03 до 6 м ¹⁾	см. примечание 3					
	от -50 до +50 °C	Δ: ±0,67 °C		ТСП 65:			
1116	от 0 до +100 °C	Δ: ±0,93 °C	ТСП 65	Δ : $\pm (0,3+0,005 \cdot t)$, °C;			
ИК	от 0 до +150 °C	Δ: ±1,21 °C	(HCX Pt 100)	ПИ 248:	11:02025	ААІ143 или	a. . 0. 15. 0/
темпера-	от 0 до +200 °C	Δ: ±1,49 °C	ПИ 248	g ±0,1 % или Δ: ±0,2 °C	HiC2025	SAI143	g: ±0,15 %
туры	от 0 до +250 °C от 0 до +350 °C	Δ: ±1,78 °C Δ: ±2,36 °C	(от 4 до 20 мА)	(берут большее			
	от -196 до 600 °С ¹⁾	см. примечание 3		значение)			

1	ние таолицы 4 2	3	4	5	6	7	8
	от -50 до +50 °C	Δ: ±0,67 °C	TC 65	TC 65: Δ: ±(0,3+0,005· t), °C;			
	от 0 до +100 °C	Δ: ±0,93 °C	(HCX Pt 100)	Д. ±(0,5+0,003· ц), С, ПИ 248:	HiC2025	AAI143 или	g ±0,15 %
	от 0 до +250 °C	Δ: ±1,78 °C	ПИ 248 (от 4 до 20 мА)	g ±0,1 % или Δ: ±0,2 °C (берут большее	11102023	SAI143	g. ±0,13 %
	от -196 до 600 °С ¹⁾	см. примечание 3	(01 1 до 20 мп1)	значение)			
	от 0 до +100 °C	Δ: ±0,91 °C	TC 65 (HCX Pt 100)	TC 65: Δ: ±(0,3+0,005· t), °C;	11:02025	ААІ143 или	0 15 0/
	от -196 до 600 °С ¹⁾	см. примечание 3	Rosemount 248 (от 4 до 20 мА)	Rosemount 248: g ±0,1 %	HiC2025	SAI143	g. ±0,15 %
	от 0 до +150 °C	Δ: ±1,2 °C	TC 90.2820 (HCX Pt 100) YTA 110 (от 4 до 20 мА) ТСП 90.2820 (HCX Pt 100) dTRANS T01	TC 90.2820: Δ: ±(0,3+0,005· t), °C; YTA110:	HiC2025	ААІ143 или SAI143 ААІ143 или SAI143	g ±0,15 %
ИК темпера-	от -200 до 600 °С ¹⁾	см. примечание 3		АЦП: Δ: ±0,14 °C; ЦАП: g ±0,02 %	11102023		g. ±0,13 %
туры	от 0 до +100 °C	Δ: ±0,93 °C		TCΠ 90.2820: Δ: ±(0,3+0,005· t), °C; dTRANS T01:	11:02025		- 0.15.0/
	от -200 до 600 °С ¹⁾	см. примечание 3		Δ: ±0,2 °C (в диапазоне от -100 до +200 °C); Δ: ±0,4 °C (в диапазоне от -200 до +850 °C)	HiC2025		g ±0,15 %
	от 0 до +100 °C	Δ: ±0,93 °C	ТСП 90.2109	TCΠ 90.2109: Δ: ±(0,3+0,005· t), °C			
	от -50 до +200 °C	см. примечание 3	(HCX Pt 100) dTRANS T01 707016 (от 4 до 20 мА)	dTRANS T01 707016: Δ: ±0,2 °C (в диапазоне от -100 до +200 °C); Δ: ±0,4 °C (в диапазоне от -200 до +850 °C)	HiC2025	AAI143 или SAI143	g ±0,15 %

1	2	3	4	5	6	7	8
	от 0 до +80 °C от 0 до +120 °C от -50 до +155 °C ¹⁾	Δ: ±0,8 °C Δ: ±1,03 °C см. примечание 3	TC Pt100 (HCX Pt 100) YTA 110 (от 4 до 20 мА)	TC Pt100: Δ: ±(0,3+0,005· t), °C; YTA110: ΑΙΙΠ: Δ: ±0,14 °C;	HiC2025	AAI143 или SAI143	g ±0,15 %
ИК темпера- туры	от 0 до +80 °C от 0 до +120 °C от 0 до +200 °C от -200 до +600 °C ¹⁾	Δ : ±0,8 °C Δ : ±1,03 °C Δ : ±1,49 °C Δ : тримечание 3	РТ100 (HCX Pt 100) YTA 110 (от 4 до 20 мА)	ЦАП: g ±0,02 % PT100: Δ: ±(0,3+0,005· t), °C; YTA110: АЦП: Δ: ±0,14 °C; ЦАП: g ±0,02 %	HiC2025	AAI143 или SAI143	g ±0,15 %
	от -20 до +300 °C от -20 до +500 °C от -20 до +1000 °C	Δ: ±2,93 °C Δ: ±4,25 °C Δ: ±7,99 °C	ТС10 (НСХ К) ТМТ82 (от 4 до 20 мА)	$TC10^{5)}$: Δ : $\pm 1,5$ °C (в диапазоне от -40 до +375 °C включ.); Δ : $\pm (0,004 \cdot t)$ °C (в диапазоне св. +375 до +1000 °C); $TC10^{6)}$:	HiC2025	ААІ143 или SAI143	g ±0,15 %
	от -40 до +1200 °C ¹⁾	см. примечание 3		Δ: ±2,5 °C (в диапазоне от -40 до +333 °C включ.); Δ: ±(0,0075·t) °C (в диапазоне св. +333 до +1200 °C); ТМТ82: АЦП: Δ: ±0,25 °C; ЦАП: g ±0,03 %; Δ: ±(0,3+0,005· t), °C ⁴⁾			

1	2	3	4	5	6	7	8
	от -40 до +410 °C	Δ: ±3,59 °C		TC88 ⁵⁾ : Δ: ±1,5 °C (в диапазоне от -40 до +375 °C включ.);			
	от -40 до +450 °C	Δ: ±3,89 °C		Δ: ±(0,004·t) °C (в диапазоне св. +375			
	от -40 до +500 °C	Δ: ±4,26 °C	ТС88 (НСХ К) ТМТ82 (от 4 до 20 мА)	до +1000 °C); TC88 ⁶): Δ: ±2,5 °C (в диапазоне	H: G2025	AAI143 или SAI143 AAI143 или SAI143	0.47.0/
	от -40 до +600 °C	Δ: ±5,01 °C		от -40 до +333 °C включ.); Δ: ±(0,0075·t) °C (в диапазоне св. +333	HiC2025		g ±0,15 %
ИК темпера- туры	от -40 до +1200 °C¹)	см. примечание 3		диапазоне св. +353 до +1200 °C); ТМТ82: АЦП: Δ : \pm 0,25 °C; ЦАП: \pm 0,03 %; Δ : \pm (0,3+0,005· t), °C ⁴⁾			
	от -40 до +120 °C	Δ: ±0,54 °C	TR12-B	TR12-B: Δ : $\pm (0,15+0,002 \cdot t)^{7}$, °C;			
	от -100 до +450 °C¹)	см. примечание 3	(HCX Pt 100) YTA 320 (от 4 до 20 мА)	Δ: ±(0,3+0,005· t) ⁸⁾ , °C; YTA320: АЦП: Δ: ±0,14 °C; ЦАП: g ±0,02 %	HiC2025		
	от -50 до +50 °C	Δ: ±0,36 °C	TR24 (HCX Pt 100)	TR24: Δ : $\pm (0,15+0,002 \cdot t)^{7}$, °C; Δ : $\pm (0,3+0,005 \cdot t)^{8}$, °C;	HiC2025	АА I143 или	c +0.15 %
	от -200 до +600 °C ¹⁾	см. примечание 3	ТМТ82 (от 4 до 20 мА)	ТМТ82: АЦП: Δ: ±0,1 °C; ЦАП: g ±0,03 %	11102023	SAI143	g ±0,15 %

1	2	3	4	5	6	7	8
	от -50 до +120 °C	Δ: ±0,56 °C	TD (1	TR61: Δ : $\pm (0,15+0,002 \cdot t)^{7}$, °C;			
	от -50 до +250 °C	Δ: ±0,91 °C	TR61 (HCX Pt 100)	Δ : $\pm (0,3+0,005 \cdot t)^{8}$, °C; TMT182:	HiC2025	AAI143 или	g ±0,15 %
	от -200 до +600 °C ¹⁾	см. примечание 3	ТМТ182 (от 4 до 20 мА)	Δ : ± 0.2 °C или \mathfrak{g} ± 0.08 % (берут большее значение)		SAI143	
	от -50 до +50 °C	Δ: ±0,36 °C					
	от -50 до +100 °C	Δ: ±0,49 °C					
	от -50 до +120 °C	Δ: ±0,54 °C					
	от -50 до +150 °C	Δ: ±0,63 °C		TR88: Δ : $\pm (0,15+0,002 \cdot t)^{7}$, °C;			
ИК	от -50 до +175 °C	Δ: ±0,69 °C					
темпера-	от -50 до +200 °C	Δ: ±0,76 °C					
туры	от -50 до +225 °C	Δ: ±0,83 °C					
	от -50 до +290 °C	Δ: ±1,01 °C	TR88				
	от -50 до +300 °C	Δ: ±1,04 °C	(HCX Pt 100)	Δ : $\pm (0,3+0,005 \cdot t)^{8)}$, °C;	HiC2025	AAI143 или	g: ±0,15 %
	от -50 до +350 °C	Δ: ±1,17 °C	TMT82	TMT82:	111C2U23	SAI143	g. ±0,13 %
	от -50 до +380 °C	Δ: ±1,26 °C	(от 4 до 20 мА)	АЦП: Δ: ±0,1 °C;			
	от -50 до +400 °C	Δ: ±1,31 °C		ЦАП: g ±0,03 %			
	от -50 до +600 °C	Δ: ±1,87 °C					
	от 0 до +100 °C	Δ: ±0,45 °C					
	от 0 до +150 °C	Δ: ±0,58 °C					
	от 0 до +300 °C	Δ: ±0,99 °C					
	от -200 до +600 °C¹)	см. примечание 3					

1	2	3	4	5	6	7	8
	от -50 до +150 °C	Δ: ±0,64 °C	TR88 (HCX Pt 100)	TR88: Δ : $\pm (0,15+0,002 \cdot \mathbf{t})^{7}$, °C; Δ : $\pm (0,3+0,005 \cdot \mathbf{t})^{8}$, °C; TMT182:	HiC2025	ААІ143 или	g ±0,15 %
	от -200 до +600 °C ¹⁾	см. примечание 3	ТМТ182 (от 4 до 20 мА)	Δ: ±0,2 °С или g ±0,08 % (берут большее значение)	THC2023	SAI143	g = 0,20 /0
	от 0 до +150 °C	Δ: ±1,2 °C	WTH 160-250 (HCX Pt 100) TTH 300 (от 4 до 20 мА)	WTH 160-250: Δ: ±(0,3+0,005· t), °C; TTH 300:	HiC2025	ААІ143 или	g ±0,15 %
	от -200 до +600 °C¹¹	см. примечание 3		АЦП: Δ: ±0,08 °C; ЦАП: g ±0,05 %	11102020	SAI143	J ==,==
ИК темпера- туры	от 0 до +150 °C	Δ: ±1,21 °C	WTH 160-250 (HCX Pt 100) ПИ 644 (от 4 до 20 мА)	WTH 160-250: Δ: ±(0,3+0,005⋅ t), °C; ПИ 644:	HiC2025	AAI143 или SAI143	g: ±0,15 %
	от -200 до +600 °C ¹⁾	см. примечание 3		АЦП: Δ: ±0,15 °C; ЦАП: g ±0,03 %	THC2023		y ±0,13 70
	от 0 до +150 °C	Δ: ±1,21 °C	WTH 280-400 (HCX Pt 100)	WTH 280-400: Δ: ±(0,3+0,005· t), °C; ПИ 644:	HiC2025	ААІ143 или	~ +0.15.0/
	от -200 до +600 °C¹)	см. примечание 3	ПИ 644 (от 4 до 20 мА)	АЦП: Δ: ±0,15 °C; ЦАП: g ±0,03 %	11102023	SAI143	g ±0,15 %
	от -30 до +120 °C	Δ: ±0,56 °C	ДТС 044 (HCX Pt 100)	ДТС 044: Δ: ±(0,15+0,002· t), °С;	HiC2025	AAI143 или SAI143	o +0.15 0/
	от -100 до +300 °C¹)	см. примечание 3	PR 6335 (от 4 до 20 мА)	PR 6335: g ±0,05 %	11102023		g ±0,15 %

1	2	3	4	5	6	7	8
	от -50 до +120 °C	Δ: ±1,06 °C	ТСП 002-06 (HCX Pt 100)	TCΠ 002-06: Δ: ±(0,3+0,005· t), °C; TMT 112:	HiC2025	AAI143 или	g ±0,15 %
ИК	от -200 до +600 °C¹¹	см. примечание 3	ТМТ 112 (от 4 до 20 мА)	Δ : ±0,2 °С или \mathbf{g} ±0,08 % (берут большее значение)	11102023	SAI143	g. ±0,13 %
	от 0 до +100 °C от 0 до +150 °C от -50 до +500 °C ¹⁾	Δ: ±0,47 °C Δ: ±0,51 °C см. примечание 3	Метран-286 (от 4 до 20 мА)	g ±0,15 % или Δ: ±0,4 °C (берут большее значение)	HiC2025	AAI143 или SAI143	g ±0,15 %
	от -50 до +200 °C	Δ: ±0,61 °C	ПТ Метран-286 (от 4 до 20 мА)	g ±0,15 % или Δ: ±0,4 °C (берут большее	HiC2025	AAI143 или SAI143	g ±0,15 %
	от -50 до +500 °C ¹⁾	см. примечание 3	(01 + д0 20 MA)	значение)		5A1143	

1	2	3	4	5	6	7	8
1	от 0 до +150 °С	Δ: ±3,77 °C	ТХА Метран-241	ТХА Метран-241:			
ИК темпера- туры	от -40 до +1100 °C ¹⁾	см. примечание 3	(HCX K) ПИ 644 (от 4 до 20 мА)	А: ±6,82 °С (св. +650 до +700 °С включ.); А: ±7,80 °С (св. +700 до +800 °С включ.); А: ±8,80 °С (св. +800 до +900 °С включ.); А: ±10,00 °С (св. +900 до +1000 °С включ.); А: ±10,70 °С (св. +1001 до +1100 °С включ.); ПИ 644: АЦП: Δ: ±0,5 °С; ЦАП: g ±0,03 %; Δ: ±0,5 °С ⁴	HiC2025	AAI143 или SAI143	g ±0,15 %

1	2	3	4	5	6	7	8
	от 0 до 1,6 м ³ /ч; от 0 до 4 м ³ /ч; от 0 до 12,5 м ³ /ч; от 0 до 50 м ³ /ч; от 0 до 200 м ³ /ч; от 0 до 320 м ³ /ч	см. примечание 3	ADMAG AXF (от 4 до 20 мА)	d: ±0,35 %	HiC2025	ААІ143 или SAI143	g ±0,15 %
ИК объемного расхода	от 0 до 6,3 м³/ч; от 0 до 15 м³/ч; от 0 до 20 м³/ч; от 0 до 32 м³/ч; от 0 до 40 м³/ч; от 0 до 63 м³/ч; от 0 до 75 м³/ч; от 0 до 100 м³/ч; от 0 до 145 м³/ч; от 0 до 200 м³/ч; от 0 до 300 м³/ч; от 0 до 350 м³/ч; от 0 до 2000 м³/ч; от 0 до 2000 м³/ч; от 0 до 2000 м³/ч; от 0 до 2000 м³/ч; от 0 до 8000 м³/ч; от 0 до 8000 м³/ч;	см. примечание 3	YEWFLO DY (от 4 до 20 мА)	В зависимости от Ду d: жидкость: - 15 мм: ±1,0 % при 20000≤Re<2000D и ±0,75 % при 2000D≤Re; - 25 мм: ±1,0 % при 20000≤Re		ААІ143 или SAI143	g ±0,15 %

1	2	3	4	5	6	7	8
ИК объемного расхода	от 0 до 50 м ³ /ч; от 0 до 180 м ³ /ч; от 0 до 4800 м ³ /ч; от 0 до 10000 м ³ /ч; от 0 до 15000 м ³ /ч; от 0 до 42000 м ³ /ч	см. примечание 3	YEWFLO DY (от 4 до 20 мА)	В зависимости от Ду d: жидкость: - 25 мм: ±2,0 % при 20000≤Re≤1500D и ±1,5 % при 1500D≤Re; - от 40 до 100 мм: ±2,0 % при 20000≤Re≤1000D и ±1,5 % при 1000D≤Re; - от 150 до 400 мм: ±2,0 % при 40000≤Re≤1000D и ±1,5 % при 1000D≤Re; газ и пар: ±2,0 % для V≤35 м/с и ±2,5 % для 35 <v≤80 td="" м="" с<=""><td>HiC2025</td><td>AAI143 или SAI143</td><td>g ±0,15 %</td></v≤80>	HiC2025	AAI143 или SAI143	g ±0,15 %
	от 0 до 125000 м ³ /ч	см. примечание 3	GF868 (от 4 до 20 мА)	d: ±3,5 %	HiC2025	AAI143 или SAI143	g ±0,15 %

1	2	3	4	5	6	7	8
ИК массового расхода	от 0 до 45000 кг/ч $^{1)}$	см. примечание 3	YEWFLO DY (от 4 до 20 мА)	В зависимости от Ду d: жидкость: - 25 мм: ±2,0 % при 20000≤Re≤1500D и ±1,5 % при 1500D≤Re; - от 40 до 100 мм: ±2,0 % при 20000≤Re≤1000D и ±1,5 % при 1000D≤Re; - от 150 до 400 мм: ±2,0 % при 40000≤Re≤1000D и ±1,5 % при 1000D≤Re; газ и пар: ±2,0 % для V≤35 м/с и ±2,5 % для 35 <v≤80 td="" м="" с<=""><td>HiC2025</td><td>AAI143 или SAI143</td><td>g ±0,15 %</td></v≤80>	HiC2025	AAI143 или SAI143	g ±0,15 %
	от 0 до 600 кг/ч $^{1)}$	см. примечание 3	RCCS32/RCCF31 (от 4 до 20 мА)	d: $\pm \frac{20}{6}, 5 + \frac{1.9}{M} \frac{\ddot{o}}{\dot{\phi}}, \%$	HiC2025	AAI143 или SAI143	g: ±0,15 %
ИК вибро-	от 0 до 20 мм/с	см. примечание 3	VIB 5.736 (от 4 до 20 мА)	d: ±10 %	HiC2025	AAI143 или SAI143	g ±0,15 %
скорости	от 0,1 до 30 мм/с	см. примечание 3	ВК-310С (от 4 до 20 мА)	см. примечание 4	HiC2025	AAI143 или SAI143	g ±0,15 %
ИК НКПР	от 0 до 50 % НКПР (горючие газы)	g ±5,51 %	ЭРИС-210 (от 4 до 20 мА)	g ±5 %	HiC2025	AAI143 или SAI143	g ±0,15 % g ±0,1 %

1	ие таолицы 4 2	3	4	5	6	7	8
	от 0 до 100 % НКПР (метан)	Δ: ±5,51 % НКПР (в диапазоне от 0 до 50 % НКПР включ.);	Polytron 2IR	Δ: ±5 % НКПР (в диапазоне от 0 до	HiC2025	AAI143 или	g ±0,15 %
ИК НКПР		d: ±11,01 % (в диапазоне св. 50 до 100 % НКПР)	(от 4 до 20 мА)	50 % НКПР включ.); d: ±10 % (в диапазоне cв. 50 до 100 % НКПР)	ı	SAI143	g ±0,1 %
	от 0 до 100 % НКПР	Δ: ±3,31 % НКПР (в диапазоне от 0 до 50 % НКПР включ.);	ДГС ЭРИС-210	Δ: ±3 % НКПР (в диапазоне от 0 до 50 % НКПР включ.);	HiC2025	AAI143 или	g ±0,15 %
	(метан)	Δ: ±5,49 % НКПР (в диапазоне св. 50 до 100 % НКПР)		∆: ±(0,9·X+1,02) % НКПР (в диапазоне св. 50 до 100 % НКПР)	-	SAI143	g: ±0,1 %
	от 0 до 50 млн ⁻¹ (объемная доля сероводорода)	g ±22,01 % (в диапазоне от 0 до 5 млн ⁻¹ включ.);	ДГС ЭРИС-210 (от 4 до 20 мА)	g ±20 % (в диапазоне от 0 до 5 млн ⁻¹ включ.);	HiC2025	AAI143 или	g ±0,15 %
		d: ±22,07 % (в диапазоне св. 5 до 50 млн ⁻¹)		d: ±20 % (в диапазоне св. 5 до 50 млн ⁻¹)	-	SAI143	g ±0,1 %
	от 0 до 50 млн ^{-1 1)}	4 5 7 4 0 4	Polytron 2 XP TOX		HiC2025	ААІ143 или	g: ±0,15 %
ИК	(объемная доля сероводорода)	g ±16,51 %	(от 4 до 20 мА)	g ±15 %	I	SAI143	g ±0,1 %
концен- трации	от 0 до 20 млн ⁻¹ (объемная доля	g ±22,01 % (в диапазоне от 0 до 7 млн ⁻¹ включ.);	Polytron 3000	g ±20 % (в диапазоне от 0 до 7 млн ⁻¹ включ.);	HiC2025	ААІ143 или	g ±0,15 %
	сероводорода)	d: ±22,01 % (в диапазоне св. 7 до 20 млн ⁻¹)	(от 4 до 20 мА)	d: ±20 % (в диапазоне св. 7 до 20 млн ⁻¹)	-	SAI143	g ±0,1 %
	от 1 до 300 млн ⁻¹ (массовая доля	см. примечание 3	Hydrosense 2410	d: ±30 % (в диапазоне от 1 до 15 млн ⁻¹);	HiC2025	ААІ143 или	g ±0,15 %
	нефти (нефте- продуктов)) ^{1), 9)}	r	(от 4 до 20 мА)	d: ± 10 % (в диапазоне св. 15 до 300 млн $^{-1}$)	_	SAI143	g ±0,1 %

1	2	3	4	5	6	7	8
ИК концен- трации	от 0 до 1000 млн ⁻¹ (объемная доля	g ±27,51 %	СОМТЕС 6000 (от 4 до 20 мА)	g ±25 % 10)	HiC2025	AAI143 или SAI143	g: ±0,15 %
	оксида углерода)				_		g: ±0,1 %
	от 0 до 25 %	Δ: ±0,34 %	OXITEC 5000 (от 4 до 20 мА)	Δ: ±0,3 %	HiC2025	AAI143 или SAI143	g: ±0,15 %
	(объемная доля кислорода)				_		g ±0,1 %
ИК	от 0,0005 до 0,0050 г/см ^{3 11)}	см. примечание 3	L-Dens 427 T (от 4 до 20 мА)	d: ±2 %	HiC2025	AAI143 или SAI143	g: ±0,15 %
плотности					_		g ±0,1 %
ИК силы тока	от 4 до 20 мА	g: ±0,15 %	-	-	HiC2025	AAI143 или SAI143	g: ±0,15 %
		g ±0,1 %			_		g: ±0,1 %
ИК воспроизведения силы тока	от 4 до 20 мА	g ±0,32 %	_	_	HiC2031	AAI543	g ±0,32 %
		g ±0,30 %			_		g ±0,30 %

¹⁾ Указан максимальный диапазон измерений (диапазон измерений может быть настроен на меньший диапазон в соответствии с эксплуатационной документацией на первичный ИП ИК).

²⁾ В диапазоне от 0,03 до 0,3 м включ. ³⁾ В диапазоне св. 0,3 до 6,0 м.

Б диапазопе св. 6,5 до 6,6 м.

Пределы допускаемой абсолютной погрешности внутренней автоматической компенсации температуры свободных (холодных) концов термопары.

Для термопары класса допуска 1 по ГОСТ Р 8.585–2001.

Для термопары класса допуска 2 по ГОСТ Р 8.585–2001.

⁷⁾ Для термопреобразователей сопротивления класса допуска А по ГОСТ 6651-2009.

8) Для термопреобразователей сопротивления класса допуска В по ГОСТ 6651-2009.

⁹⁾ Диапазон показаний массовой доли нефти (нефтепродуктов) составляет от 0 до 1000 млн и может быть перенастроен на меньший диапазон в соответствии с эксплуатационной документацией на первичный ИП ИК.

 $^{^{10)}}$ Пределы допускаемой основной приведенной погрешности нормированы только для анализируемых сред с объемной долей кислорода (2,1 \pm 0,1) %.

¹¹⁾ Диапазон показаний плотности от 0 до 3 г/см3 и может быть перенастроен на меньший диапазон в соответствии с эксплуатационной документацией на первичный ИП ИК.

Примечания

1 НСХ – номинальная статическая характеристика; АЦП – аналогово-цифровое преобразование; ЦАП – цифро-аналоговое преобразование.

2 Приняты следующие обозначения:

 Δ – абсолютная погрешность, в единицах измеряемой величины;

d – относительная погрешность, %;

д- приведенная к диапазону измерений погрешность, %;

t – измеренная температура, °С;

g₁ – приведенная погрешность. В качестве нормирующего значения принимается верхний предел измерений – 6 м;

Ду – диаметр условного прохода, мм;

D – внутренний диаметр детектора, мм;

Re – число Рейнольдса;

V – скорость, м/с;

M – массовый расход, кг/ч;

Х – значение объемной доли определяемого компонента, %.

3 Пределы допускаемой основной погрешности ИК рассчитывают по формулам:

- абсолютная $D_{_{\!\scriptscriptstyle INV}}$, в единицах измеряемой величины:

$$D_{\rm MK} = \pm 1.1 \times \sqrt{D_{\rm HII}^2 + \mathop{cos}\limits_{\dot{c}} g_{\rm BII}} \times \frac{X_{\rm max} - X_{\rm min}}{100} \mathop{\ddot{o}^2}\limits_{\dot{\varpi}}, \label{eq:DMK}$$

где D_{mi} пределы допускаемой основной абсолютной погрешности первичного ИП ИК, в единицах измерения измеряемой величины;

 ${\bf g}_{_{\rm B\Pi}}$ — пределы допускаемой основной приведенной погрешности вторичной части ИК, %;

- значение измеряемого параметра, соответствующее максимальному значению диапазона аналогового сигнала, в единицах измеряемой величины:

X_{min} – значение измеряемого параметра, соответствующее минимальному значению границы диапазона аналогового сигнала, в единицах измерения измеряемой величины;

- относительная d_{ик}, %:

$$\mathbf{d}_{\mathrm{HK}} = \pm 1.1 \times \sqrt{\mathbf{d_{\mathrm{III}}}^2 + \mathbf{\mathop{com}\limits_{\acute{e}} \mathbf{g}_{\mathrm{BII}}} \times \frac{\mathbf{X_{\mathrm{max}}} - \mathbf{X_{\mathrm{min}}}}{\mathbf{X_{\mathrm{H3M}}}} \frac{\ddot{\mathbf{o}}^2}{\ddot{\mathbf{o}}}},$$

где d_{\min} – пределы допускаемой основной относительной погрешности первичного ИП ИК, %;

 ${\rm X}_{_{{\scriptscriptstyle {\rm IMM}}}}$ — измеренное значение, в единицах измерений измеряемой величины;

приведенная g_{ик}, %:

$$g_{\text{MK}} = \pm 1.1 \times \sqrt{g_{\text{MII}}^2 + g_{\text{BII}}^2},$$

где 9пп – пределы допускаемой основной приведенной погрешности первичного ИП ИК, %.

4 Границы основной относительной погрешности вибропреобразователя _{d_{вп}}, %, при доверительной вероятности 0,95 рассчитывают по формуле

$$d_{\rm BH} = \pm 1.1 \times \sqrt{d_0^2 + dK_{\, \Pi}^{\, 2} + D_{\rm H}^2 + \left(d_{\rm a}^{\rm BH}\right)^2 + g^2 + D_{\rm KT}^2 + D_{\rm B}^2} \ ,$$

где d_0 – относительная погрешность эталонного средства измерений параметров вибрации, входящего в состав поверочной виброустановки, %;

dK _д – относительная разность между действительным значением коэффициента преобразования и номинальным значением, указанным в паспорте вибропреобразователя, %;

Попрешность, вызванная наличием поперечного движения вибростола поверочной виброустановки, %;

d^{вп} – нелинейность амплитудной характеристики вибропреобразователя, %;

9 – неравномерность амплитудно-частотной характеристики вибропреобразователя, %;

D_{кг} – погрешность, вызванная наличием высших гармонических составляющих в законе движения вибростола поверочной виброустановки, %;

D_в – погрешность средства измерений электрического сигнала с выхода поверяемого вибропреобразователя (или согласующего усилителя), %.

Относительную разность между действительным значением коэффициента преобразования и номинальным значением, указанным в паспорте вибропреобразователя, dK_{π} , %, рассчитывают по формуле

$$dK_{\rm H} = \frac{\left| K_{\rm H} - K_{\rm H} \right|}{K_{\rm H}} \times 100,$$

где $K_{\rm II}$ – действительное значение коэффициента преобразования вибропреобразователя, м $A\cdot c$ /мм;

 $K_{\rm H}$ — номинальное значение коэффициента преобразования вибропреобразователя, м $A\cdot c/мм$.

Погрешность, вызванную наличием поперечного движения вибростола поверочной виброустановки, D_{Π} , %; рассчитывают по формуле

$$D_{\Pi} = \frac{K_{\Pi BC} \times K_{O\Pi}}{100},$$

где $K_{\Pi B C}$ – коэффициент, характеризующий поперечное движение вибростола поверочной виброустановки, %;

 ${
m K}_{
m OII}$ — относительный коэффициент поперечного преобразования вибропреобразователя, % .

Погрешность, вызванную наличием высших гармонических составляющих в законе движения вибростола поверочной виброустановки, $D_{K\Gamma}$, %, рассчитывают по формуле

где K_{Γ} — коэффициент гармоник в задаваемом режиме движения вибростола поверочной виброустановки, %.

- 5 Для расчета погрешности ИК в условиях эксплуатации:
- приводят форму представления основных и дополнительных погрешностей измерительных компонентов ИК к единому виду (приведенная, относительная, абсолютная);
- для каждого измерительного компонента ИК рассчитывают пределы допускаемых значений погрешности в условиях эксплуатации путем учета основной и дополнительных погрешностей от влияющих факторов.

Пределы допускаемых значений погрешности измерительного компонента ИК в условиях эксплуатации рассчитывают по формуле

$$D_{CH} = \pm \sqrt{D_0^2 + \mathop{a}\limits_{i=0}^{n} D_i^2} \ ,$$

где D_0 – пределы допускаемой основной погрешности измерительного компонента;

 D_{i} — погрешности измерительного компонента от i-го влияющего фактора в условиях эксплуатации при общем числе n учитываемых влияющих факторов.

Для каждого ИК рассчитывают границы, в которых с вероятностью равной 0,95 должна находиться его погрешность в условиях эксплуатации, по формуле

где $D_{\text{сиј}}$ – пределы допускаемых значений погрешности $D_{\text{си}}$ *j*-го измерительного компонента ИК в условиях эксплуатации.

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Комплектность ИС представлена в таблице 5.

Таблица 5 – Комплектность ИС

Наименование	Обозначение	Количество
Система измерительная АСУТП установки		
стабилизации нафты тит. 091/2 AO «ТАНЕКО»,	_	1 шт.
заводской № 091/2		
Система измерительная АСУТП установки		
стабилизации нафты тит. 091/2 AO «ТАНЕКО».	_	1 экз.
Руководство по эксплуатации		
Система измерительная АСУТП установки		
стабилизации нафты тит. 091/2 AO «ТАНЕКО».	_	1 экз.
Паспорт		
Государственная система обеспечения единства		
измерений. Система измерительная АСУТП	МП 1306/1-311229-2018	1 экз.
установки стабилизации нафты тит. 091/2	WIII 1300/1-311229-2016	1 3K3.
AO «ТАНЕКО». Методика поверки		

Поверка

осуществляется по документу МП 1306/1-311229-2018 «Государственная система обеспечения единства измерений. Система измерительная АСУТП установки стабилизации нафты тит. 091/2 АО «ТАНЕКО». Методика поверки», утвержденному ООО Центр Метрологии «СТП» 13 июня 2018 г.

Основные средства поверки:

- средства измерений в соответствии с нормативными документами на поверку средств измерений, входящих в состав ИС;
- калибратор многофункциональный и коммуникатор BEAMEX MC6 (-R) (регистрационный номер 52489-13).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке ИС.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе измерительной АСУТП установки стабилизации нафты тит. 091/2 AO «ТАНЕКО»

ГОСТ Р 8.596–2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «ТАНЕКО» (АО «ТАНЕКО»)

ИНН 1651044095

Адрес: 423570, Республика Татарстан, г. Нижнекамск, Промзона

Телефон: (8555) 49-02-02, факс: (8555) 49-02-00

Web-сайт: http://taneco.ru E-mail: referent@taneco.ru

Испытательный центр

Общество с ограниченной ответственностью Центр Метрологии «СТП»

Адрес: 420107, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, корп. 5, офис 7

Телефон: (843) 214-20-98, факс: (843) 227-40-10

Web-сайт: http://www.ooostp.ru

E-mail: office@ooostp.ru

Аттестат аккредитации ООО Центр Метрологии «СТП» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311229 от 30.07.2015 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

М.п. «____ » _____ 2018 г.