## ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

## Газоанализаторы дыхательных смесей Analox SDA

#### Назначение средства измерений

Газоанализаторы дыхательных смесей Analox SDA предназначены для измерений объемной доли кислорода, гелия, оксида углерода, диоксида углерода и парциального давления кислорода, гелия и диоксида углерода в смеси с азотом, воздухом и инертными газами.

#### Описание средства измерений

Принцип действия газоанализаторов дыхательных смесей Analox SDA (далее – газоанализаторы) по измерительным каналам:

- объемной доли и парциального давления кислорода, объемной доли оксида углерода электрохимический;
- объемной доли и парциального давления диоксида углерода недисперсионный инфракрасный;
  - объемной доли и парциального давления гелия термокондуктометрический.

Способ отбора пробы – диффузионный или принудительный за счет внешнего побудителя расхода.

Газоанализаторы представляют собой стационарные автоматические приборы непрерывного действия.

Конструктивно газоанализаторы выполнены по блочно-модульному принципу и состоят из следующих основных блоков:

- SDA монитор (исполнение для соответствующего датчика);
- датчики кислорода MEC O2, гелия MEC He, оксида углерода MEC CO, диоксида углерода CO2 Transducer 5S Mk III, кислорода и диоксида углерода SDA CO2/O2.

В состав газоанализатора также может входить вспомогательное оборудование (модули вывода, блоки питания, маршрутизаторы локальных сетей др.).

SDA монитор предназначен для приема и преобразования измерительной информации от датчиков, отображения ее на встроенном цветном жидкокристаллическом дисплее, задания пороговых значений срабатывания сигнализации, настройки нулевых показаний и чувствительности газоанализатора. Также SDA монитор формирует выходной цифровой сигнал (RS485, USB, Ethernet) для связи с другими устройствами. Корпус SDA монитора предназначен для установки на стандартные 19" монтажные направляющие (высота 3U) или для прямого монтажа в приборные панели.

Связь между датчиком и SDA монитором осуществляется в цифровой форме, интерфейс RS485, расстояние до 500 м. SDA мониторы могут быть объединены в локальную сеть Ethernet.

Газоанализаторы обеспечивают ведение и хранение журнала регистрации данных, период записи данных 10 с (состояние газоанализатора, среднее, минимальное и максимальное значение результатов измерений за 10 с), объем памяти – последние 90 суток (запись циклическая, при превышении интервала в 90 суток стираются самые старые записи).

Газоанализаторы обеспечивают выходные сигналы:

- показания жидкокристаллического дисплея SDA монитора;
- цифровые выходные сигналы RS-485, USB, Ethernet;
- аналоговый выходной сигнал от 4 до 20 мА (при наличии модуля вывода);
- релейный выходной сигнал (при наличии модуля вывода).

Общий вид газоанализатора приведен на рисунках 1 и 2, схема пломбировки от несанкционированного доступа - на рисунке 3.



Рисунок 1 – Общий вид газоанализаторов, SDA монитор (на примере SDA монитор Не, внешний вид остальных SDA мониторов аналогичен)





б) датчик МЕС Не



в) датчик МЕС СО



г) датчик SDA CO2/O2



д) CO2 Transducer 5S Mk III

Рисунок 2 - Общий вид газоанализаторов, датчики MEC O2, MEC He, SDA CO2/O2



Рисунок 3 – Схема пломбировки от несанкционированного доступа

### Программное обеспечение

таблице.

Газоанализаторы имеют встроенное программное обеспечение (ПО), разработанное изготовителем специально для решения задач измерения содержания определяемых компонентов.

Встроенное ПО обеспечивает выполнение следующих функций:

- прием, обработку измерительной информации от датчиков;
- индикация результатов измерений на жидкокристаллическом дисплее;
- настройка нулевых показаний и чувствительности газоанализаторов;
- самодиагностика аппаратной части газоанализатора и вывод информации об отказах;
- ведение и хранение журнала регистрации данных;
- напоминание о необходимости замены электрохимических сенсоров;
- формирование выходных цифровых и аналоговых сигналов.

Встроенное ПО реализует следующие расчетные алгоритмы:

- вычисление результатов измерений содержания определяемых компонентов по данным от датчиков;
  - настройка нулевых показаний и чувствительности газоанализаторов;
- сравнение текущих результатов измерений с заданными пороговыми уровнями срабатывания сигнализации.

Встроенное ПО идентифицируется через меню «Информация» SDA монитора.

Газоанализаторы обеспечивают возможность работы с автономным программным обеспечением SDA для персонального компьютера под управлением Microsoft Windows XP, Vista или 7.

Влияние встроенного ПО на метрологические характеристики газоанализаторов учтено при их нормировании. Уровень защиты «низкий» в соответствии с Р 50.2.077–2014.

Идентификационные данные встроенного программного обеспечения газоанализаторов приведены в таблице 1.

Таблица 1 – Идентификационные данные встроенного программного обеспечения

| Идентификационные данные (признаки)                                            | Значение     |  |
|--------------------------------------------------------------------------------|--------------|--|
| Идентификационное наименование ПО                                              | Прошивка SDA |  |
| Номер версии (идентификационный номер) ПО                                      | 2.3          |  |
| Примечание – Номер версии ПО газоанализаторов должен быть не ниже указанного в |              |  |

#### Метрологические и технические характеристики

Таблица 2 – Основные метрологические характеристики газоанализаторов

| Компонента         относительной           Объемная доля кислорода (O₂), %         от 0 до 100         ±(0,04 + 0,01 ⋅ Cвх)³)         -           Парциальное давление кислорода (O₂), мбар²)         от 0 до 3000         ±(0,4 + 0,01 ⋅ Свх)³)         -           Парциальное давление кислорода (O₂), кПа²)         от 0 до 5         ±0,04         -           Парциальное давление кислорода (O₂), кПа²)         от 0 до 5         ±0,1         -           Парциальное давление кислорода (O₂), кПа²)         от 0 до 3 включ.         ±0,03         -           Парциальное давление кислорода (О₂), кПа²)         от 0 до 20         ±(1,0+0,05⋅Свх)³)         -           Объемная доля оксида углерода (СО₂), млн¹         от 0 до 5000         ±(25 + 0,05⋅Свх)³)         -           Объемная доля диоксида углерода (СО₂), млн²         от 0 до 10 000         ±(50 + 0,05⋅Свх)³)         -           Парциальное давление диоксида углерода (СО₂), кПа²²         от 0 до 100         -         ±2 % прив.           Объемная доля гелия (Не), %         от 0 до 100         -         ±2 % прив.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Таблица 2 – Основные метрологические характеристики газоанализаторов |                  |                                         |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|-----------------------------------------|-----------------|
| канал)         определяемого компонента         абсолютной         приведенной¹¹ или относительной           Объемная доля кислорода (О₂), %         от 0 до 100         ±(0,04 + 0,01 ⋅ Cвх)³¹ -         -           Парциальное давление кислорода (О₂), мбар ²¹ парциальное давление кислорода (О₂), кПа ²¹ парциальное давление кислорода (Со), мпн¹ парциальное давление дуглерода (Со₂), кПа ²¹ парциальное давление диоксида углерода (Со₂), кПа ²² парциальное давление диоксида углерода (Со₂), кПа ²² парциальное давление сто до 100         - ша сто до                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                    | ' '              | 1                                       |                 |
| Объемная доля кислорода (О₂), %         от 0 до 100         ±(0,04 + 0,01 ⋅ Cвх)³³³         -           Парциальное давление кислорода (О₂), мбар²²         от 0 до 3000         ±(0,4 + 0,01 ⋅ Свх)³³         -           Парциальное давление кислорода (О₂), кПа²²         от 0 до 5         ±(0,4 + 0,01 ⋅ Свх)³³         -           Парциальное давление кислорода (О₂), кПа²²         от 0 до 5         ±0,04         -           Парциальное давление кислорода (О₂), кПа²²         от 0 до 5         ±0,1         -           Парциальное давление кислорода (О₂), кПа²²         от 0 до 3 включ.         ±0,03         -           Объемная доля оксида углерода (СО₂), мпн¹         от 0 до 20         ±(1,0+0,05 ⋅ Свх)³³         -           Объемная доля диоксида углерода (СО₂), млн¹         от 0 до 5000         ±(25 + 0,05 ⋅ Свх)³³         -           Парциальное давление диоксида углерода (СО₂), кПа²²         от 0 до 10 000         ±(0,02 + 0,05 ⋅ Свх)³³         -           Объемная доля гелия (Не), %         от 0 до 100         -         ±2 % прив.           Парциальное давление наричальное давление давле                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | нент (измерительный                                                  | ний содержания   |                                         |                 |
| Объемная доля кислорода (O₂), %         от 0 до 100         ±(0,04 + 0,01 ⋅ C <sub>вх</sub> )³)         -           Парциальное давление кислорода (O₂), мбар²)         от 0 до 1500         ±(0,4 + 0,01 ⋅ C <sub>вх</sub> )³)         -           Парциальное давление кислорода (O₂), кПа²)         от 0 до 5         ±0,04         -           Парциальное давление кислорода (O₂), кПа²)         от 0 до 5         ±0,1         -           Парциальное давление кислорода (O₂), кПа²)         от 0 до 3 включ.         ±0,03         -           Парциальное давление кислорода (CO₂), кПа²)         от 0 до 20         ±(1,0+0,05 ⋅ C <sub>вх</sub> )³)         -           Объемная доля оксида углерода (CO₂), млн¹         от 0 до 5000         ±(25 + 0,05 ⋅ C <sub>вх</sub> )³)         -           Объемная доля диоксида углерода (CO₂), кПа²)         от 0 до 10 000         ±(50 + 0,05 ⋅ C <sub>вх</sub> )³)         -           Парциальное давление диоксида углерода (CO₂), кПа²)         от 0 до 100         -         ±2 % прив.           Объемная доля гелия (Не), %         от 0 до 100         -         ±2 % прив.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | канал)                                                               | определяемого    | абсолютной                              | приведенной или |
| рода (O <sub>2</sub> ), %  Парциальное давление кислорода (O <sub>2</sub> ), мбар <sup>2)</sup> Парциальное давление кислорода (O <sub>2</sub> ), кПа <sup>2)</sup> Объемная доля оксида углерода (CO), млн <sup>-1</sup> Объемная доля диоксида углерода (CO <sub>2</sub> ), кПа <sup>2)</sup> Парциальное давление давление давление давление диоксида углерода (CO <sub>2</sub> ), кПа <sup>2)</sup> Объемная доля диоксида углерода (CO <sub>2</sub> ), кПа <sup>2)</sup> Объемная доля гелия (СО <sub>2</sub> ) (С |                                                                      | компонента       |                                         | относительной   |
| кислорода (О₂), мбар ²)         от 0 до 1500         ±(0,4 + 0,01 ⋅ C <sub>вх</sub> ) ³)         -           Парциальное давление кислорода (О₂), кПа ²)         от 0 до 5         ±0,04         -           Парциальное давление кислорода (О₂), кПа ²)         от 0 до 5         ±0,1         -           Парциальное давление кислорода (О₂), кПа ²)         от 0 до 3 включ.         ±0,03         -           Объемная доля оксида углерода (СО), млн⁻¹         от 0 до 20         ±(1,0+0,05 ⋅ C <sub>вх</sub> ) ³)         -           Объемная доля диоксида углерода (СО₂), млн⁻¹         от 0 до 5000         ±(25 + 0,05 ⋅ C <sub>вх</sub> ) ³)         -           Парциальное давление диоксида углерода (СО₂), кПа ²)         от 0 до 10 000         ±(0,02 + 0,05 ⋅ C <sub>вх</sub> ) ³)         -           Объемная доля гелия (Не), %         от 0 до 100         -         ±2 % прив.           Парциальное давление нерода (СО₂) даление диоксида углерода (СО₂) даление давление                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      | от 0 до 100      | , , , , , , , , , , , , , , , , , , , , | -               |
| Парциальное давление кислорода (O₂), кПа ²)         от 0 до 5         ±0,04         -           Парциальное давление кислорода (O₂), кПа ²)         от 0 до 5         ±0,1         -           Парциальное давление кислорода (O₂), кПа ²)         от 0 до 3 включ.         ±0,03         -           Св. 3 до 25         -         ±1 % отн.           Объемная доля оксида углерода (CO), млн⁻¹         от 0 до 20         ±(1,0+0,05⋅C <sub>вх</sub> ) ³)         -           Объемная доля диоксида углерода (CO₂), млн⁻¹         от 0 до 5000         ±(25 + 0,05⋅C <sub>вх</sub> ) ³)         -           Парциальное давление диоксида углерода (CO₂), кПа ²)         от 0 до 10 000         ±(0,02 + 0,05⋅C <sub>вх</sub> ) ³)         -           Объемная доля гелия (Не), %         от 0 до 100         -         ±2 % прив.           Парциальное давление диоксида углерода (СО₂), кПа ²)         от 0 до 100         -         ±2 % прив.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      | от 0 до 3000     | $\pm (0.4 + 0.01 \cdot C_{BX})^{3}$     | -               |
| кислорода (O₂), кПа ²) Парциальное давление кислорода (O₂), кПа ²) Парциальное давление кислорода (O₂), кПа ²)  от 0 до 3 включ.  св. 3 до 25  св. 3 до 25  св. 3 до 20  от 0 до 5000  ±(1,0+0,05⋅C <sub>вх</sub> )³)  от 0 до 10 000  ±(50 + 0,05⋅C <sub>вх</sub> )³)  парциальное давление диоксида углерода (CO₂), млн¹  парциальное давление диоксида углерода (CO₂), кПа ²)  от 0 до 10 000  ±(0,02 + 0,05⋅C <sub>вх</sub> )³)  ст. 1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | кислорода ( $O_2$ ), мбар $^{2)}$                                    | от 0 до 1500     | $\pm (0.4 + 0.01 \cdot C_{BX})^{3}$     | -               |
| кислорода (O2), кПа 2)       ОТ 0 до 3 включ.       ±0,03       -         Парциальное давление кислорода (O2), кПа 2)       от 0 до 3 включ.       ±0,03       -         Св. 3 до 25       -       ±1 % отн.         Объемная доля оксида углерода (CO), млн⁻¹       от 0 до 20       ±(1,0+0,05⋅C <sub>вх</sub> )³)       -         Объемная доля диоксида углерода (CO2), млн⁻¹       от 0 до 10 000       ±(25 + 0,05⋅C <sub>вх</sub> )³)       -         Парциальное давление диоксида углерода (CO2), кПа 2)       от 0 до 1,0       ±(0,02 + 0,05⋅C <sub>вх</sub> )³)       -         Объемная доля гелия (Не), %       от 0 до 100       -       ±2 % прив.         Парциальное давление давление давление давление давление сто то т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      | от 0 до 5        | ±0,04                                   | -               |
| кислорода (O <sub>2</sub> ), кПа <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      | от 0 до 5        | ±0,1                                    | -               |
| Объемная доля оксида углерода (CO), млн $^{-1}$ от 0 до 20 $\pm (1,0+0,05\cdot C_{BX})^{3)}$ - Объемная доля диоксида углерода (CO $_2$ ), млн $^{-1}$ от 0 до 10 000 $\pm (25+0,05\cdot C_{BX})^{3)}$ - Парциальное давление диоксида углерода (CO $_2$ ), кПа $^{2}$ от 0 до 1,0 $\pm (0,02+0,05\cdot C_{BX})^{3)}$ - Собъемная доля гелия (He), % от 0 до 100 $\pm (25+0,05\cdot C_{BX})^{3)}$ - $\pm (25+0,05\cdot C_{BX})^{3}$ - $\pm (25+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | от 0 до 3 включ. | ±0,03                                   | -               |
| углерода (CO), млн <sup>-1</sup> Объемная доля диоксида углерода (CO <sub>2</sub> ), млн <sup>-1</sup> Парциальное давление диоксида углерода (CO <sub>2</sub> ), кПа <sup>2</sup> Объемная доля гелия (He), %  Объемная доля гелия (Толь до 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | св. 3 до 25      | -                                       | ±1 % отн.       |
| Парциальное давление диоксида углерода $(CO_2)$ , к $\Pi a^{2)}$ от 0 до 1,0 $\pm (0.02 + 0.05 \cdot C_{BX})^{3)}$ - $(CO_2)$ , к $\Pi a^{2)}$ от 0 до 100 - $\pm 2$ % прив.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | от 0 до 20       |                                         | -               |
| Парциальное давление диоксида углерода $(CO_2)$ , к $\Pi a^{2)}$ от 0 до 1,0 $\pm (0.02 + 0.05 \cdot C_{BX})^{3)}$ - $(CO_2)$ , к $\Pi a^{2)}$ от 0 до 100 - $\pm 2$ % прив.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | от 0 до 5000     | $\pm (25 + 0.05 \cdot C_{BX})^{3)}$     | -               |
| Парциальное давление диоксида углерода $(CO_2)$ , к $\Pi a^{2)}$ от 0 до 1,0 $\pm (0.02 + 0.05 \cdot C_{BX})^{3)}$ - $(CO_2)$ , к $\Pi a^{2)}$ от 0 до 100 - $\pm 2$ % прив.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | да углерода ( $CO_2$ ), млн <sup>-1</sup>                            | от 0 до 10 000   | $\pm (50 + 0.05 \cdot C_{BX})^{3)}$     | -               |
| (Не), %     -     ±2 % прив.       Парциальное давление     от 0 до 100     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | диоксида углерода                                                    | от 0 до 1,0      |                                         | -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | от 0 до 100      | -                                       | ±2 % прив.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Парциальное давление гелия (He), $\kappa\Pi a^{2}$                   | от 0 до 100      | -                                       | ±2 % прив.      |

<sup>1)</sup> К верхнему пределу диапазона измерений.

Таблица 3 – Прочие метрологические характеристики газоанализаторов

| Two many many many many map and the many many many many many many many many |                                                 |
|-----------------------------------------------------------------------------|-------------------------------------------------|
| Наименование характеристики                                                 | Значение                                        |
| Предел допускаемой вариации выходного сигнала, в долях от предела до-       |                                                 |
| пускаемой основной погрешности                                              | 0,5                                             |
| Пределы допускаемой дополнительной погрешности от воздействия изме-         |                                                 |
| нения температуры окружающей среды:                                         |                                                 |
| - датчик MEC O2                                                             | 0,4 % отн./1 °С                                 |
| - датчик МЕС СО                                                             | $0,5\mathrm{млн}^{-1}/1^{\mathrm{o}}\mathrm{C}$ |
| - датчик МЕС Не                                                             | 0,05 %/1 °C                                     |

<sup>&</sup>lt;sup>2)</sup> Для автоматического пересчета результатов измерений объемной доли в единицы парциального давления и наоборот и отображения результатов измерений на SDA мониторе в состав газоанализатора должен входить монитор глубины SDA с подключенным к нему датчиком давления утвержденного типа, с метрологическими характеристиками не хуже: диапазон измерений давления от 0 до 60 бар, пределы допускаемой погрешности ≤ 0,25 % от диапазона измерений, с аналоговым выходным сигналом в диапазоне от 4 до 20 мА, например преобразователи давления измерительные S-10 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 38288-13), производства фирмы «WIKA Alexander Wiegand SE & Co. KG».

 $<sup>^{3)}</sup>$  С<sub>вх</sub> – значение содержания определяемого компонента на входе газоанализатора, объемная доля, %, [парциальное давление, мбар (кПа)].

# Продолжение таблицы 3

| Наименование характеристики                                            | Значение                                    |
|------------------------------------------------------------------------|---------------------------------------------|
| - датчик CO2 Transducer 5S Mk III                                      | 2,5 млн <sup>-1</sup> /1 °C                 |
| - SDA CO2 (от 0 до 5000 млн <sup>-1</sup> )                            | 2,5 млн <sup>-1</sup> /1 °C                 |
| - SDA CO2 (от 0 до 10000 млн <sup>-1</sup> )                           | 5 млн <sup>-1</sup> /1 °C                   |
| Пределы допускаемой дополнительной погрешности датчика от влияния      |                                             |
| изменения относительной влажности среды, в долях от пределов допускае- |                                             |
| мой основной погрешности                                               | 0,5                                         |
| Предел допускаемого времени установления выходного сигнала по уровню   |                                             |
| $0.9 (T_{0.9\pi}), c:$                                                 |                                             |
| - датчик МЕС О2                                                        | 15                                          |
| - датчик МЕС СО                                                        | 25                                          |
| - датчик МЕС Не                                                        | 15                                          |
| - датчик CO2 Transducer 5S Mk III                                      | 30                                          |
| - датчик SDA CO2/O2                                                    | 40 (CO <sub>2</sub> ), 15 (O <sub>2</sub> ) |
| Предел допускаемого изменения выходного сигнала за 8 ч непрерывной     |                                             |
| работы, в долях от предела допускаемой основной погрешности            | 0,5                                         |
| Время прогрева газоанализаторов, с, не более                           | 60                                          |
| Нормальные условия измерений:                                          |                                             |
| - температура окружающей среды, °С                                     | от +15 до +25                               |
| - относительная влажность окружающей среды, %                          | от 30 до 80                                 |
| - атмосферное давление, кПа                                            | от 90,6 до 104,8                            |

Таблица 4 – Основные технические характеристики газоанализаторов

| Наименование характеристики                                         | Значение    |
|---------------------------------------------------------------------|-------------|
| Напряжение питания постоянным током, В                              |             |
| - SDA монитор                                                       | от 12 до 32 |
| - датчик SDA CO2/O2                                                 | от 12 до 32 |
| - датчик MEC O2, He, CO,                                            | $5,0\pm0,5$ |
| - датчик CO2 Transducer 5S Mk III                                   | от 9 до 36  |
| Электрический ток, потребляемый газоанализатором, А, не более:      |             |
| - SDA монитор (при напряжении питания 24 B)                         |             |
| - датчик MEC O2, CO (при напряжении питания 5 B)                    | 0,64        |
| - датчик МЕС Не (при напряжении питания 5 В)                        | 0,08        |
| - датчик CO2 Transducer 5S Mk III (при напряжении питания 24 B)     | 0,14        |
| - датчик SDA CO2/O2 (при напряжении питания 24 B)                   | 0,20        |
| Габаритные размеры газоанализаторов (без дополнительных устройств), |             |
| мм, не более:                                                       |             |
| - SDA монитор:                                                      |             |
| длина                                                               | 120         |
| ширина                                                              | 133         |
| высота                                                              | 31          |
| - датчик MEC O2, He, CO:                                            |             |
| длина                                                               | 65          |
| ширина                                                              | 50          |
| высота                                                              | 35          |
| - датчик CO2 Transducer 5S Mk III:                                  |             |
| длина                                                               | 115         |
| ширина                                                              | 70          |
| высота                                                              | 40          |

Продолжение таблицы 4

| Наименование характеристики                                            | Значение     |
|------------------------------------------------------------------------|--------------|
| - датчик SDA CO2/O2:                                                   |              |
| длина                                                                  | 205          |
| ширина                                                                 | 170          |
| высота                                                                 | 100          |
| Масса газоанализаторов, кг, не более                                   |              |
| - SDA монитор                                                          | 0,665        |
| - датчик MEC O2, He, CO,                                               | 0,099        |
| - датчик CO2 Transducer 5S Mk III                                      | 0,365        |
| - датчик SDA CO2/O2                                                    | 1,728        |
| Средний срок службы, лет <sup>1)</sup>                                 | 10           |
| Средняя наработка на отказ, ч                                          | 10 000       |
| Степень защиты корпуса от влияния пыли и воды соответствуют по ГОСТ    |              |
| 14254-96:                                                              |              |
| - SDA монитор                                                          | IP22         |
| <ul> <li>датчик MEC O2, He, CO,</li> </ul>                             | IP65         |
| - CO2 Transducer 5S Mk III                                             | IP22         |
| - датчик SDA CO2/O2                                                    | IP54         |
| Условия эксплуатации:                                                  |              |
| - температура окружающей среды, °С                                     | от -5 до +55 |
| - относительная влажность воздуха (без конденсации влаги) при темпера- |              |
| Type +35 °C, %:                                                        |              |
| - SDA монитор                                                          | от 0 до 95   |
| - датчики MEC O2, He, CO, CO2 Transducer 5S Mk III, SDA CO2/O2         | от 0 до 99   |
| - атмосферное давление, кПа                                            | от 70 до 130 |
|                                                                        |              |
| 1) Без учета срока службы электрохимических сенсоров.                  |              |

## Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации и на заднюю поверхность SDA монитора газоанализатора в виде наклейки.

## Комплектность средства измерений

Таблица 5 – Комплектность газоанализаторов

| Наименование                | Обозначение      | Количество | Примечание         |
|-----------------------------|------------------|------------|--------------------|
| SDA монитор                 | -                | 1 шт.      | Исполнение в зави- |
|                             |                  |            | симости от исполь- |
|                             |                  |            | зуемого датчика    |
| Датчики                     | MEC O2, He, CO,  | 1 шт.      | По заказу          |
|                             | SDA CO2/O2       |            |                    |
| Датчик давления             | -                | 1 шт.      | По заказу          |
| Монитор глубины SDA         | -                | 1 шт.      | По заказу          |
| Программное обеспечение SDA | -                | 1 шт.      | По заказу          |
| Руководство по эксплуатации | -                | 1 экз.     |                    |
| Методика поверки            | МП-242-2155-2017 | 1 экз.     |                    |

#### Поверка

осуществляется по документу МП-242-2155-2017 «ГСИ. Газоанализаторы дыхательных смесей Analox SDA. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» 24 января 2018 г.

Основные средства поверки:

- стандартные образцы состава газовые смеси диоксид углерода – гелий (ГСО 10531-2014), кислород – гелий (ГСО 10530-2014, 10531-2014), гелий – воздух (ГСО 10532-2014), оксид углерода – воздух (ГСО 10531-2014) в баллонах под давлением.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых газоанализаторов с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

#### Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

# Нормативные и технические документы, устанавливающие требования к газоанализаторам дыхательных смесей Analox SDA

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

ГОСТ 8.578-2014 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах

Техническая документация фирмы «Analox Sensor Technology Ltd.»

#### Изготовитель

Фирма «Analox Sensor Technology Ltd.», Великобритания

Адрес: 15 Ellerbeck Court, Stokesley Business Park, Stokesley, North Yorkshire, UK, TS9 5PT

Телефон: +44 (0) 1642 711400, факс: +44 (0) 1642 713900

Web-сайт: <u>www.analox.net</u> E-mail: analoxast@analox.net

#### Заявитель

Акционерное общество «Тетис Про» (АО «Тетис Про»)

ИНН 7724643714

Адрес: 142770, г. Москва, д. Столбово, Бутовская промзона, вл. 2

Телефон: +7 (495) 786-98-55, факс: +7 (495) 717-38-21

Web-сайт: www.tetis-pro.ru

E-mail: tetis@tetis.ru

## Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес:190005, г. Санкт-Петербург, Московский пр., д. 19 Телефон: +7 (812) 251-76-01, факс: +7 (812) 713-01-14

Web-сайт: <u>www.vniim.ru</u> E-mail: <u>info@vniim.ru</u>

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

М.п.

| Заместитель                |
|----------------------------|
| Руководителя Федерального  |
| агентства по техническому  |
| регулированию и метрологии |

| A.B. K | улешов  |
|--------|---------|
|        | 2018 г. |