ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества и показателей качества нефти №241 ТПП «ТатРИТЭКнефть» АО «РИТЭК»

Назначение средства измерений

Система измерений количества и показателей качества нефти №241 ТПП «ТатРИТЭКнефть» АО «РИТЭК» (далее – СИКН) предназначена для автоматических измерений массы брутто и массы нетто нефти при проведении учетных операций между ТПП «ТатРИТЭКнефть» и АО «Транснефть-Прикамье».

Описание средства измерений

Принцип действия СИКН основан на использовании прямого метода динамических измерений массы брутто нефти с помощью счетчиков-расходомеров массовых (далее – МПР). Массу нетто нефти определяют как разность массы брутто нефти и массы балласта. Массу балласта определяют как сумму масс воды, хлористых солей и механических примесей в нефти.

Конструктивно СИКН состоит из входного и выходного коллекторов, блока измерительных линий (далее – БИЛ), блока измерений показателей качества нефти (далее – БИК), узла подключения передвижной поверочной установки (далее – ПУ), системы сбора и обработки информации (далее – СОИ). Технологическая обвязка и запорная арматура СИКН не допускает неконтролируемые пропуски и утечки нефти.

На входном коллекторе СИКН установлены следующие средства измерений (далее – СИ) (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений) и технические средства:

- манометр для местной индикации давления.

БИЛ состоит из одной рабочей измерительной линии (далее – ИЛ) и одной резервной ИЛ. На каждой ИЛ установлены следующие СИ и технические средства:

- счетчик-расходомер массовый Micro Motion модели CMF 200 (далее МПР) (регистрационный № 13425-01);
- преобразователь измерительный 644 (регистрационный № 14683-04) в комплекте с термопреобразователем сопротивления платиновым серии 65 (регистрационный № 22257-05);
 - преобразователь давления измерительный 3051 (регистрационный № 14061-99);
- преобразователь измерительный САПФИР-22M для местной индикации разности давления на фильтре сетчатом МИГ- Φ -100-4,0;
 - манометры и термометр для местной индикации давления и температуры.

БИК выполняет функции оперативного контроля показателей качества нефти и автоматического отбора проб для лабораторного контроля показателей качества нефти. Отбор представительной пробы нефти в БИК осуществляется по ГОСТ 2517-2012 через пробозаборное устройство.

В БИК установлены следующие СИ и технические средства:

- два влагомера нефти поточных УДВН-1пм (регистрационный № 14557-05);
- счетчик жидкости турбинный CRA/MRT 97 (регистрационный № 22214-01);
- денсиметр SARASOTA модификации FD960 (регистрационный № 19879-00);
- преобразователь измерительный 644 (регистрационный № 14683-04) в комплекте с термопреобразователем сопротивления платиновым серии 65 (регистрационный № 22257-05);
 - преобразователь давления измерительный 3051 (регистрационный № 14061-99);
 - два пробоотборника автоматических «Стандарт-А» для автоматического отбора проб;
 - пробоотборник ручной «Стандарт-Р» для ручного отбора проб;
 - манометры и термометр для местной индикации давления и температуры.

На выходном коллекторе СИКН установлены следующие СИ и технические средства:

- датчик температуры 644 (регистрационный № 39539-08);
- преобразователь давления измерительный 3051 (регистрационный № 14061-04);

- манометр и термометр для местной индикации давления и температуры.

Узел подключения передвижной ПУ предназначен для проведения поверки и контроля метрологических характеристик (далее – КМХ) МПР и поверки установки трубопоршневой поверочной стационарной «ОЗНА-Прувер С-0,05» модели 100 по передвижной ПУ.

СОИ обеспечивает сбор, хранение и обработку измерительной информации. В состав СОИ входят: два измерительно-вычислительных контроллера OMNI-6000 (регистрационный № 15066-01 и 15066-04), осуществляющих сбор измерительной информации и формирование отчетных данных, и автоматизированное рабочее место оператора, оснащенное монитором, клавиатурой и печатающим устройством.

Поверку и КМХ МПР проводят с помощью блока ПУ, расположенного на одной площадке с СИКН и включающего в себя следующие СИ и технические средства:

- установка трубопоршневая поверочная стационарная «ОЗНА-Прувер С-0,05» модели 100 (регистрационный № 31455-06);
 - два преобразователя давления измерительных 3051 (регистрационный № 14061-10);
 - два датчика температуры 3144Р (регистрационный № 39539-08);
 - манометры и термометры для местной индикации давления и температуры.

СИКН обеспечивает выполнение следующих функций:

- автоматическое измерение массового расхода нефти в рабочем диапазоне (т/ч);
- автоматическое измерение массы брутто нефти в рабочем диапазоне расхода (т);
- автоматическое измерение температуры (°C), давления (МПа), объемной доли воды в нефти (%) и плотности нефти (кг/м 3);
- вычисление массы нетто нефти (т) с использованием результатов измерений содержания воды, хлористых солей и механических примесей в нефти;
 - поверку и КМХ МПР по блоку ПУ или по передвижной ПУ;
 - поверку стационарной ПУ по передвижной ПУ;
 - автоматический отбор объединенной пробы нефти;
- регистрацию и хранение результатов измерений, формирование интервальных отчётов, протоколов, актов приема-сдачи нефти, паспортов качества нефти;
 - защита информации от несанкционированного доступа.

Для исключения возможности несанкционированного вмешательства, которое может влиять на показания СИ, входящих в состав СИКН, обеспечена возможность пломбирования в соответствии с МИ 3002-2006, нанесения знаков поверки на СИ в соответствии с их методиками поверки.

Программное обеспечение

Программное обеспечение (далее – ΠO) СИКН разделено на два структурных уровня – верхний и нижний.

К ПО нижнего уровня относится ПО измерительно-вычислительных контроллеров OMNI-6000, обеспечивающее общее управление ресурсами вычислительного процессора, базами данных и памятью, интерфейсами контроллера, проведение вычислительных операций, хранение калибровочных таблиц, передачу данных на верхний уровень. К метрологически значимой части ПО нижнего уровня относится операционная система измерительновычислительных контроллеров OMNI-6000.

К ПО верхнего уровня относится программа автоматизированного рабочего места –, выполняющая функции передачи данных с нижнего уровня, отображения на станции оператора функциональных схем и технологических параметров объекта, приема и обработки управляющих команд оператора, формирования отчетных документов.

ПО СИКН защищено от несанкционированной модификации, обновления (загрузки), удаления и иных преднамеренных изменений измеренных (вычисленных) данных и метрологически значимой части ПО с помощью системы паролей, ведения внутреннего журнала фиксации событий. Уровень защиты ПО СИКН «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения СИКН.

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	-
Номер версии (идентификационный номер) ПО	24.75.04
Цифровой идентификатор ПО (CRC16)	9111

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений массового расхода, T/Y (M^3/Y)	от 8,4 до 81,4
Пределы допускаемой относительной погрешности при	
измерении массы брутто нефти, %	±0,25
Пределы допускаемой относительной погрешности при	
измерении массы нетто нефти, %	±0,35

Таблица 3 – Основные технические характеристики

таолица 3 – Основные технические характеристики	
Наименование характеристики	Значение
Измеряемая среда	нефть
Диапазон плотности измеряемой среды, кг/м3	от 840 до 920
Диапазон температуры измеряемой среды, °С	от +5 до +40
Диапазон давления измеряемой среды, МПа	от 0,4 до 2,0
Параметры электропитания	
- напряжение питания сети, В	$400^{+40}_{-40}/230^{+23}_{-23}$
- частота питающей сети, Гц	(50±0,4)
Габаритные размеры СИКН (ДхШхВ), мм,	9 000x6 000x2 900
Условия эксплуатации:	
- температура окружающей среды, °С	от -40 до +45
- относительная влажность, %	от 20 до 90
- атмосферное давление, кПа	от 96 до 104
Режим работы СИКН	непрерывный
Масса, кг	27 000
Средний срок службы, лет	10
Средняя наработка на отказ, ч	30 000

Знак утверждения типа

наносится на титульный лист инструкции по эксплуатации СИКН типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Система измерений количества и показателей качества нефти	_	1 шт.
№241 ТПП «ТатРИТЭКнефть» АО «РИТЭК», зав. № 1	_	
Инструкция по эксплуатации СИКН	-	1 экз.
Инструкция. ГСИ. Система измерений количества и показателей качества нефти №241 ТПП «ТатРИТЭКнефть» АО «РИТЭК». Методика поверки	НА.ГНМЦ.0215- 18 МП	1 экз.

Поверка

осуществляется по документу НА.ГНМЦ.0215-18 МП «Инструкция. ГСИ. Система измерений количества и показателей качества нефти №241 ТПП «ТатРИТЭКнефть» АО «РИТЭК». Методика поверки», утверждённому ОП ГНМЦ АО «Нефтеавтоматика» 24.05.2018 г.

Основные средства поверки:

- рабочий эталон 2-го разряда в соответствии с частью 2 Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, утвержденной приказом Росстандарта от 07.02.2018 г. № 256 в диапазоне расходов, соответствующему диапазону расходов СИКН;
- средства поверки в соответствии с документами на поверку средств измерений, входящих в состав системы.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемой СИКН с требуемой точностью.

Знак поверки наносится на свидетельство о поверке СИКН.

Сведения о методиках (методах) измерений

приведены в документе МН 353-2013 «Масса нефти. Методика измерений системой измерений количества и показателей качества нефти № 241 для учетных операций при транспортировке нефти на пункте приема-сдачи нефти ТПП «ТатРИТЭКнефть» ОАО «РИТЭК» и ОАО «СЗМН» ОАО «АК «Транснефть», ФР.1.29.2017.28749.

Нормативные документы, устанавливающие требования к системе измерений количества и показателей качества нефти №241 ТПП «ТатРИТЭКнефть» АО «РИТЭК»

ГОСТ Р 8.595-2004 ГСИ. Масса нефти и нефтепродуктов. Общие требования к методикам выполнения измерений

Приказ Росстандарта от 07.02.2018 г. № 256 «Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости»

Приказ Минэнерго России от 15.03.2016 № 179 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений, выполняемых при учете используемых энергетических ресурсов, и обязательных метрологических требований к ним, в том числе показателей точности измерений»

Изготовитель

Открытое акционерное общество «Нефтеавтоматика» (ОАО «Нефтеавтоматика») ИНН 0278005403

Адрес: 450005, Республика Башкортостан, г. Уфа, ул. 50-летия Октября, 24

Телефон: +7 (347) 292-79-10, 292-79-11, 279-88-99, 8-800-700-78-68

Факс: +7 (347) 228-80-98, 228-44-11

E-mail: nefteavtomatika@nefteavtomatika.ru

Заявитель

Территориально-производственное предприятие «ТатРИТЭКнефть» Акционерное общество «Российская инновационная топливно-энергетическая компания» (ТПП «ТатРИТЭКнефть» АО «РИТЭК»)

ИНН 7736036626

Адрес: 423040, Республика Татарстан, г. Нурлат, ул. Ленинградская, д. 16

Телефон: +7 (84345) 2-45-00 Факс: +7 (84345) 2-45-06

E-mail: fax@tatritek.ru

Испытательный центр

Акционерное общество «Нефтеавтоматика» (АО «Нефтеавтоматика») Адрес: 420029, Республика Татарстан, г. Казань, ул. Журналистов, д. 2а

Телефон: +7 (843) 567-20-10, 8-800-700-78-68

Факс: +7 (843) 567-20-10

E-mail: gnmc@nefteavtomatika.ru

Аттестат аккредитации AO «Нефтеавтоматика» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311366 от 09.10.2015 г.

М.п.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	

	А.В. Кулешов
« »	2018 г.