ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Расходомер Turbo Flow GFG-F

Назначение средства измерений

Расходомер Turbo Flow GFG-F (далее расходомер) предназначен для измерений объемного расхода газа в рабочих условиях и вычисления объема, объемного расхода и объема газа, приведенных к стандартным условиям, массового расхода и массы газа — природного, воздуха, азота, а также других однокомпонентных газов и газовых смесей известного состава.

Описание средства измерений

Принцип действия расходомера основан на зависимости частоты колебаний струи измеряемой среды в чувствительном элементе расходомера от объемного расхода газа, протекающего через него. В качестве чувствительного элемента преобразователя расхода используется струйный генератор. Парциальный расход, протекающий через чувствительный элемент, обеспечивается устройством формирования расхода. Частота колебаний воспринимается пьезопреобразователем и преобразователя в электрический частотный сигнал, поступающий в электронный блок преобразователя расхода. В электронном блоке частотный электрический сигнал, поступивший от пъезопреобразователя, преобразуется в цифровой сигнал, определяющий объемный расход газа в рабочих условиях. Сигналы, сформированные в электронном блоке, поступают в вычислитель параметров, в котором выполняются вычисления объема газа, объемного расхода и объема газа, приведенного к стандартным условиям, массового расхода и массы газа.

Расходомер состоит из:

- преобразователя расхода (далее ПР);
- устройства формирования расхода (далее УФР), предназначенного для формирования парциального расхода, измеряемого ПР. УФР представляет собой корпус круглого сечения измерительный участок (включающий необходимые прямолинейные участки) с установленной в нем специальной износоустойчивой диафрагмой с коническим входом;
 - преобразователя температуры (далее ПТ);
 - преобразователя давления (далее ПД).

ПР выполнен в виде конструктивно законченного узла и состоит из:

- чувствительного элемента (далее ЧЭ) струйного генератора с пьезопреобразователем;
- электронного блока (далее ЭБ);
- вычислителя параметров (далее ВП), принимающего информацию по каналам расхода, давления и температуры от ЭБ и вычисляющего объем при рабочих условиях, объемный расход и объем газа, приведенные к стандартным условиям, а также массовый расход и массу газа по стандартизованным алгоритмам, с учетом измеренных или введенных теплофизических параметров измеряемой среды. ВП может иметь показывающее устройство для отображения информации и клавиатуру для управления. Вычислитель параметров вынесен во внешний терминал (далее ВТ). ВТ подключается к ПР посредством цифровой линии связи.

Расходомер обеспечивает выполнение следующих функций:

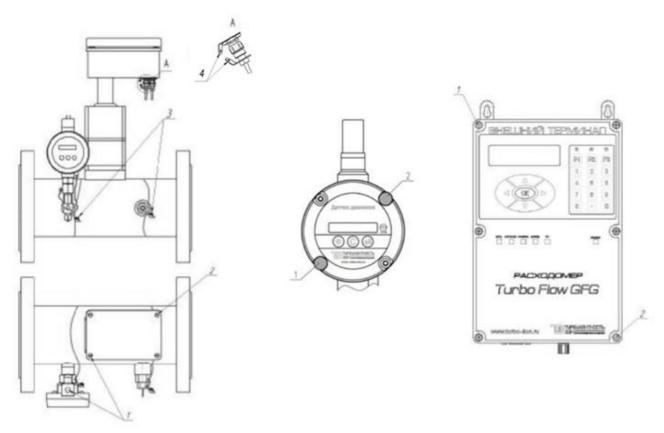
- измерение объемного расхода газа в рабочих условиях и вычисление объема, объемного расхода и объема газа, приведенных к стандартным условиям, вычисление массового расхода и массы газов;
- архивирование в энергонезависимой памяти и вывод на показывающее устройство результатов измерений и вычислений объемного расхода, объема, температуры, давления, архивов событий и параметров функционирования;
 - передачу измеренных данных, параметров настройки и архивной информации;
 - разделение и ограничение напряжения и тока в искробезопасных цепях.

Расходомер обеспечивает вывод на показывающее устройство (индикатор) следующих параметров:

- текущее значение объемного расхода газа;

- текущее значение объемного расхода газа, приведенного к стандартным условиям;
- текущее значение температуры измеряемой среды;
- текущее значение давления измеряемой среды;
- текущие дату и время;
- суммарный объем газа в рабочих условиях и объем газа, приведенного к стандартным условиям, средние значения температуры и давления за установленные интервалы времени (секунды, минуты, часы, сутки, месяц);
- суммарный накопленный объем газа в рабочих условиях и объема газа, приведенный к стандартным условиям, с момента пуска в эксплуатацию;
 - время работы с момента пуска в эксплуатацию;
 - время работы в режиме присутствия нештатных ситуаций;
 - параметры функционирования расходомера.

Общий вид расходомера представлен на рисунке 1.



а) Расходомер Turbo Flow GFG-F

б) Внешний терминал pacxoдoмера Turbo Flow GFG-F

Рисунок 1 – Общий вид расходомера Turbo Flow GFG-F

Схема пломбировки от несанкционированного доступа, обозначение мест нанесения знака поверки представлены на рисунке 2.

- 1 места для пломбы изготовителя (способом давления на специальную мастику);
- 2 места для нанесения знака поверки (способом давления на специальную мастику);
- 3 пломба свинцовая изготовителя;
- 4 отверстия под пломбу навесную изготовителя.

Рисунок 2 — Схема пломбировки от несанкционированного доступа, обозначение мест нанесения знака поверки и пломбы завода-изготовителя

Программное обеспечение

Программное обеспечение (ПО) расходомера по аппаратному обеспечению является встроенным. Преобразование измеряемых величин и обработка измерительных данных выполняется с использованием внутренних аппаратных и программных средств. ПО хранится в энергонезависимой памяти. Программная среда постоянна, отсутствуют средства и пользовательская оболочка для программирования или изменения ПО.

Метрологические характеристики расходомеров нормированы с учетом влияния программного обеспечения.

Программное обеспечение разделено на:

- метрологически значимую часть;
- метрологически незначимую часть.

Разделение программного обеспечения выполнено внутри кода ПО на уровне языка программирования. К метрологически значимой части ПО относятся:

- программные модули, принимающие участие в обработке (расчетах) результатов измерений или влияющие на них;
- -программные модули, осуществляющие отображение измерительной информации, ее хранение, передачу, идентификацию, защиту ПО и данных;
 - -параметры ПО, участвующие в вычислениях и влияющие на результат измерений.

Примененные специальные средства защиты в достаточной мере исключают возможность несанкционированной модификации, обновления (загрузки), удаления и иных преднамеренных изменений метрологически значимой части ПО и измеренных (вычисленных) данных.

Уровень защиты программного обеспечения расходомеров от преднамеренных и непреднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	GFG
Номер версии (идентификационный номер) ПО	4.45
Цифровой идентификатор ПО	0x3C1CC82F
Алгоритм вычисления цифрового идентификатора программного обеспечения	CRC-32

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таолица 2 – Метрологические характеристики	
Наименование характеристики	Значение
Диапазон измерений расхода газа, м ³ /ч	от 1,8 до 180
Пределы допускаемой относительной погрешности измерений объемного расхода газа в рабочих условиях, %	±1,0
Верхний предел измерений абсолютного давления (ВПИ), МПа	0,16
Пределы допускаемой относительной погрешности измерений давления, %	±0,25
Рабочий диапазон измерений давления, % ВПИ	от 33 до 100
Диапазон температур измеряемого газа, °С	от -50 до +70
Пределы допускаемой абсолютной погрешности измерений температуры газа, °С	$\pm (0.15 + 0.002 t)$ где $t-$ измеряемая температура
Пределы допускаемой относительной погрешности вычислений массового расхода и массы газа, объема, объемного расхода и объема газа, приведенного к стандартным условиям, %	±0,02
Пределы допускаемой приведенной погрешности преобразования значения расхода в токовый выходной сигнал (от 4 до 20 мА), выраженной по отношению к диапазону выходного токового сигнала, %	±0,1
Пределы допускаемой относительной погрешности преобразования значения расхода газа в частотный выходной сигнал, %	±0,1
Пределы допускаемой приведенной погрешности измерений постоянного тока (от 4 до 20 мА), выраженной по отношению к диапазону выходного токового сигнала, %	±0,1

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Диаметр условный, мм	50
Цифровой проводной интерфейс	MODBUS RTU
Масса расходомера, кг, не более	8
Габаритные размеры расходомера, мм, не более:	
- высота	350
- ширина	175
- длина	280

Продолжение таблицы 3

Наименование характеристики	Значение	
Параметры электрического питания, В:		
- ПР	от внешнего блока питания от	
	12 до 18	
- BT	от сети ~220 ± 22	
Потребляемая мощность, Вт, не более	15	
Маркировка взрывозащиты	0 Ex ia IIC T4 Ga	
Условия эксплуатации:		
- температура окружающего воздуха, °С	от -50 до +70	
- относительная влажность воздуха, %	до 95	

Знак утверждения типа

наносится на маркировочную табличку, закрепленную на ПР и ВТ методом аппликации и на титульные листы руководства по эксплуатации и паспорта печатным способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Кол-во
Расходомер	Turbo Flow GFG-F	1 шт.
Расходомеры Turbo Flow GFG. Руководство по эксплуатации	ТУАС.407299.001 РЭ	1 экз.
Расходомер Turbo Flow GFG-F. Паспорт	ТУАС.407299.001 ПС	1 экз.
Расходомер Turbo Flow GFG-F. Методика поверки	MΠ 208-047-2018	1 экз.

Поверка

осуществляется по документу МП 208-047-2017 «ГСИ. Расходомер Turbo Flow GFG-F. Методика поверки», утвержденному Φ ГУП «ВНИИМС» 25 июля 2018 г.

Основные средства поверки:

- рабочий эталон 1-го разряда по ГОСТ Р 8.618-2014 с пределами допускаемой относительной погрешности $\pm 0.3\%$ и диапазоном измерений от 1.8 до 180 м³/ч;
- калибратор многофункциональный MC5-R (регистрационный номер 22237-08), диапазон измерений частот импульсов от 0,0028 Γ ц до 50 к Γ ц, пределы абсолютной погрешности ± 1 импульс; диапазон измерений силы постоянного тока от -100 до 100 мA, погрешность не более (0,02 % от показаний + 1,5 мкA);
- рабочий эталон единицы избыточного давления 1-го разряда по ГОСТ Р 8.802-2012, в диапазоне значений от 0.04 до 0.6 МПа;
- термометр лабораторный электронный ЛТ-300 (регистрационный номер 45379-10), диапазонs от минус 50 до плюс 300 °C, $\Pi\Gamma \pm 0.05$ °C в диапазоне от минус 50 до плюс 200 °C;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится в паспорт расходомера или на свидетельство о поверке и на специальную мастику в местах крепления крышек составных частей расходомера.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к расходомеру Turbo Flow GFG-F

ГОСТ Р 8.618-2006 ГСИ. Государственная поверочная схема для средств измерений объемного и массового расхода газа

ГОСТ 30319.2-2015 Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода

ГОСТ Р 8.802-2012 Государственная система обеспечения единства измерений (ГСИ). Государственная поверочная схема для средств измерений избыточного давления до 250 МПа

Изготовитель

Общество с ограниченной ответственностью НПО «Турбулентность-ДОН» (ООО НПО «Турбулентность-ДОН»)

ИНН 6141021685

Адрес: 346800, Ростовская область, Мясниковский район, с. Чалтырь, 1 км шоссе Ростов-Новошахтинск, стр. N 6/8

Тел./факс: +7 (863) 203-77-80 / +7 (863) 203-77-81

E-mail: <u>info@turbo-don.ru</u>

Заявитель

Общество с ограниченной ответственностью «Газпром инвест»

(ООО «Газпром инвест»)

ИНН 7810483334

Адрес: 196210, г. Санкт-Петербург, Стартовая улица, д.6, лит. Д

Тел./факс: +7 (812) 455-17-00 / +7 (812) 455-17-41

E-mail: office@invest.gazprom.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: +7 (495) 437-55-77 / +7 (495) 437-56-66

Web-сайт: <u>www.vniims.ru</u> E-mail: office@vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____2018 г.