ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Устройства для распределения теплопотребления «ИНТЕГРАЛ»

Назначение средства измерений

Устройства для распределения теплопотребления «ИНТЕГРАЛ» (далее - распределители) предназначены для измерения температуры поверхности отопительного прибора и окружающего воздуха в помещении, измерения разности температур и вычисления интегральной безразмерной величины, соответствующей доле теплоотдачи отопительного прибора в коллективной системе отопления.

Описание средства измерений

Принцип действия распределителя основан на измерении разности температуры между поверхностью отопительного прибора и окружающего воздуха в помещении, и вычисления интегральной безразмерной величины, пропорциональной теплу, рассеиваемому за период отсчета отопительным прибором.

Интегральная величина Е накапливается в соответствии с алгоритмом:

$$E = \sum K_{LCD} \cdot R = K_{LCD} \cdot \left\{ \left[\frac{t_{m} - t_{L}}{60} \right]^{1,33} \cdot K_{Q} \cdot K_{C} \cdot K_{T} \cdot \Delta \tau \right\},$$

где,

 $\mathbf{K}_{\mathtt{LCD}}$ – коэффициент, ограничивающий переполнение дисплея;

R – приращение показания за один такт измерений;

t_m – температура датчика отопительного прибора, °C;

 t_{I} − температура датчика окружающей среды, °C;

1, 33 — типовой показатель степени температурного напора;

 K_0 — коэффициент теплоотдачи отопительного прибора;

 $K_{\rm c}$ — коэффициент термического контакта датчиков, коэффициент;

 K_T – коэффициент при проектных комнатных температурах < 16 °C;

 $\Delta \tau$ — длительность такта измерений.

Распределители состоят из датчиков температуры (датчик температуры отопительного прибора и датчик температуры окружающего воздуха (внутренний) и измерительного вычислителя, содержащего микропроцессор и жидкокристаллический дисплей.

Конструктивно распределители выполнены в пластмассовом корпусе. При монтаже датчик температуры отопительного прибора закрепляется на тепловом адаптере, который входит в комплект поставки. Адаптер монтируется на отопительном приборе с помощью установочного крепежа.

На жидкокристаллический дисплей распределителя могут быть выведены, текущие значения измеренных температур, текущее интегральное значение, сообщения об ошибках, в том числе предупреждение о разряде батареи. Распределители оборудованы беспроводным интерфейсом

Распределители оборудованы беспроводным интерфейсом связи (радиоканал, работающий на частоте 2,4 $\Gamma\Gamma$ ц, 868/915 $M\Gamma$ ц, 433 $M\Gamma$ ц, 169 $M\Gamma$ ц, либо любой нелицензируемый диапазон частот по протоколам передачи данных LPWAN, Lora, Wireless MBUS в зависимости от исполнения).

Распределители пломбируются механической защелкой однократного применения, предназначенной для идентификации факта несанкционированного доступа. Демонтаж распределителя с отопительного прибора возможен только после разрушения пломбы, что фиксируется и кодируется в виде ошибки, которая выводится на дисплей.

Общий вид распределителей и схема пломбировки от несанкционированного доступа представлены на рисунке 1.

Рисунок - 1 Общий вид и схема пломбировки распределителей

Программное обеспечение

Распределители имеют встроенное программное обеспечение (ПО). Встроенное ПО устанавливаются (прошиваются) в памяти распределителя при изготовлении. В процессе эксплуатации ПО не может быть изменено, т.к. пользователь не имеет к нему доступа.

ПО предназначено для сбора, преобразования, обработки, отображения на дисплее распределителя и передачи во внешние измерительные системы результатов измерений и диагностической информации.

Нормирование метрологических характеристик распределителей проведено с учетом влияния ПО.

Уровень защиты встроенного ПО и измерительной информации от преднамеренных и непреднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Uni_01
Номер версии (идентификационный номер)	11.02

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Стартовая температура измерений, °С	Δt* ³ 5
Диапазон измерений датчика температуры, °С:	
- t _m	от +20 до +95
- t ₁	от +5 до +50
Пределы допускаемой относительной погрешности	
измерений интегральной величины Е, %:	
- для 5 °C ≤ Δt < 10 °C	±12
- для 10 °C ≤ Δt < 15 °C	± 8
- для 15 °C ≤ Δt < 40 °C	±5
- для 40 °C ≤ Δt	±3
Максимальная мощность радиатора отопления, Вт	10000

^{*} Δt =(t_m - t_l), где t_m – измеренная температура поверхности радиатора отопления, t_l – измеренная температура окружающего воздуха в помещении

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Напряжение встроенного элемента питания, В	3
Срок службы встроенного элемента питания, лет, не	
менее	10
Мощность передатчика, мВт не более	10
Рабочие условия эксплуатации:	
- группа исполнения по ГОСТ Р 52931-2008	B4
Габаритные размеры, мм, не более:	
- длина	90
- ширина	40
- высота	30
Масса, г, не более	100

Знак утверждения типа

наносится на переднюю панель распределителя и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплектность поставки устройства для распределения тепла «ИНТЕГРАЛ» соответствует таблице 4.

Таблица 4 – Комплектность распределителей

Наименование и обозначение	Обозначение	Количество	
Устройство для распределения теплопотребления «ИНТЕГРАЛ»*		1 шт.	
Руководство по эксплуатации	РЭ 26.51.5-001-00119103-2018	1 экз.	
Устройство для распределения теплопотребления «ИНТЕГРАЛ». Методика поверки	МП 26.51.5-001-00119103-2018	1 экз. на партию	
Тепловой адаптер	-	1 шт.	
* - Исполнение распределителя определяется договором на поставку.			

Поверка

осуществляется по документу МП 26.51.5-001-00119103-2018 «Устройство для распределения теплопотребления «ИНТЕГРАЛ». Методика поверки» утвержденному ЗАО КИП «МЦЭ» $14.09.2018\ \Gamma$.

Основные средства поверки:

- измеритель температуры многоканальный прецизионный МИТ8, рег. № 19736-11;
- рабочий эталон 3-го разряда по ГОСТ 8.558-2009 (термометр сопротивления платиновый вибропрочный ТСПВ-1, рег. № 50256-12);
 - термостат переливной прецизионный ТПП-1, рег. № 33744-07.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в соответствующий раздел руководства по эксплуатации и/или на бланк свидетельства о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к устройствам для распределения теплопотребления «ИНТЕГРАЛ»

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

ТУ 26.51.5-001-00119103-2018 Устройства для распределения теплопотребления «ИНТЕГРАЛ». Технические условия

Изготовитель

Общество с ограниченной ответственностью «Водоучет Санкт-Петербург» (ООО «Водоучет СПБ»)

ИНН 7839022199

Адрес: 191014, г. Санкт-Петербург, улица Чехова, дом 9 литера А, помещение 1Н

Телефон/факс: +7 (812) 642-36-50 Web-сайт: www.teploy4et.ru E-mail: sale@teploy4et.ru

Испытательный центр

Закрытое акционерное общество Консалтинго-инжиниринговое предприятие «Метрологический центр энергоресурсов» (ЗАО КИП «МЦЭ»)

Адрес: 125424, г. Москва, Волоколамское шоссе, д. 88, стр. 8

Телефон/факс: +7 (495) 491-78-12 Web-сайт: http://www.kip-mce.ru

E-mail: sittek@mail.ru

Аттестат аккредитации ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311313 от 09.10.2015 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

		А.В. Кулешов
М.п.	« »	2018 г.