ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Уровнемеры радарные «ЭЛЕМЕР-УР-31»

Назначение средства измерений

Уровнемеры радарные «ЭЛЕМЕР-УР-31» (далее — уровнемеры) предназначены для бесконтактных измерений значений уровня жидкостей (в том числе нефти и нефтепродуктов, кислот, щелочей, водных растворов сред) и сыпучих и кусковых продуктов в резервуарах различного типа и непрерывного преобразования измеренного значения в выходной аналоговый или цифровой сигнал.

Описание средства измерений

Принцип действия уровнемеров основан на облучении поверхности измеряемой среды непрерывным частотно-модулированным сигналом сверхвысокой частоты. Излучаемый сигнал отражается от поверхности измеряемой среды и принимается с небольшой временной задержкой.

На основании частоты излученных и принятых сигналов рассчитывается разница частот, используемая при дальнейшей обработке сигнала. Разница частот трансформируется в частотный спектр с помощью быстрого преобразования Фурье (БПФ), на основании которого затем рассчитывается расстояние до поверхности раздела сред.

Уровнемеры изготавливаются в виде единой конструкции. В их состав входят: излучатель, электронный блок. Излучатель обеспечивает непрерывное излучение и прием отраженного от поверхности измеряемой среды сигнала. Электронный блок обеспечивает формирование частотно-модулированного сигнала, измерение и преобразование полученных от излучателя величин в значение уровня, а также преобразование значение уровня в унифицированный выходной сигнал силы постоянного тока и (или) цифровой сигнал НАRТ-протокола, или в цифровой сигнал интерфейса RS-485 с протоколом обмена MODBUS RTU.

Посредством интерфейса уровнемеры подключаются к компьютеру для передачи информации об измеряемой величине в цифровом виде, конфигурирования и подстройки. Конфигурирование уровнемеров включает: задание поддиапазона измерений уровня, установку числа усреднений (времени демпфирования), задание сетевых настроек уровнемера и обеспечивает возможность ввода параметров резервуара и других пользовательских параметров.

Уровнемеры с НАRT-протоколом передают информацию об измеряемой величине в цифровом виде по линии связи вместе с сигналом постоянного тока, не оказывая на него влияния. Цифровой выход используется для связи уровнемеров с портативным НАRT-коммуникатором или с компьютером через стандартный последовательный интерфейс и дополнительный НART-модем. На НART-коммуникаторе в зависимости от выбора профиля работы отображаются значение уровня в цифровом виде.

Уровнемеры выпускаются в следующих модификациях: «ЭЛЕМЕР-УР-31/М1», «ЭЛЕМЕР-УР-31/М2», «ЭЛЕМЕР-УР-31/М3», «ЭЛЕМЕР-УР-31/М4», «ЭЛЕМЕР-УР-31/М5», «ЭЛЕМЕР-УР-31М6», «ЭЛЕМЕР-УР-31/М7», отличающихся конструктивными особенностями.

Уровнемеры имеют исполнения:

- общепромышленное,
- взрывозащищенное с видом взрывозащиты «взрывонепроницаемая оболочка» (Exd); Общий вид уровнемеров представлен на рисунке 1.

Схема пломбировки от несанкционированного доступа представлена на рисунке 2.

«ЭЛЕМЕР-УР-31/М1» «ЭЛЕМЕР-УР-31/М2» «ЭЛЕМЕР-УР-31/М3»

«ЭЛЕМЕР-УР-31/М4» «ЭЛЕМЕР-УР-31/М5» «ЭЛЕМЕР-УР-31/М6» «ЭЛЕМЕР-УР-31/М7» Рисунок 1 — Общий вид уровнемеров

Рисунок 2 – Схема пломбировки от несанкционированного доступа

Программное обеспечение

В уровнемерах предусмотрено внутреннее и внешнее программное обеспечение (далее - ΠO).

Внутреннее ПО состоит только из встроенной в микропроцессорный модуль уровнемеров метрологически значимой части ПО. Внутреннее ПО является фиксированным, незагружаемым и может быть изменено только на предприятии-изготовителе.

Уровень защиты внутреннего ПО от преднамеренного и непреднамеренного доступа соответствует уровню «высокий» по рекомендации по метрологии Р 50.2.077-2014 — данное ПО защищено от преднамеренных изменений с помощью специальных программных средств.

Внешнее ПО, предназначенное для взаимодействия уровнемера с компьютером, не оказывает влияния на метрологические характеристики уровнемера. Внешнее ПО служит для конфигурирования, подстройки и получения данных измерения в процессе эксплуатации уровнемера. Конфигурирование уровнемеров включает задание пользовательских параметров. Подстройка уровнемера включает установку нуля. ПО также предусматривает возможность выдачи текстовых сообщений о состоянии уровнемера и возникающих в процессе его работы ошибках и способах их устранения.

Таблица 1 - Идентификационные данные внешнего программного обеспечения

Идентификационные данные	Значение	
(признаки)	по MODBUS RTU	по HART
Идентификационное наименование ПО	ur31_setup.exe	SetupHARTmanager_v4.2.4.exe
Номер версии (идентификационный		
номер) ПО	не ниже 1.01.0100	не ниже 4.2.4
Цифровой идентификатор ПО		-

Таблица 2 - Идентификационные данные внутреннего программного обеспечения

Идентификационные данные	Значение		
(признаки)	по MODBUS RTU	по HART	
Идентификационное наименование ПО	LG31_APP.HEX	UR31MBH_ver10.hex	
Номер версии (идентификационный			
номер) ПО	не ниже 2.0.00	не ниже 10	
Цифровой идентификатор (ПО)		-	

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики уровнемеров

Наименование характеристики	Значение
Диапазон измерений уровня, мм	от 500 до 20000
Пределы допускаемой абсолютной погрешности измерений уровня по	
цифровому сигналу Δ , мм	±3
Пределы допускаемой основной абсолютной погрешности преобразований	
цифрового сигнала в унифицированный выходной сигнал силы постоянного	
тока №, мА	$\pm 0,008$
Выходные сигналы:	
- силы постоянного тока, мА	от 4 до 20
- цифровой сигнал	MODBUS RTU
	HART
Пределы допускаемой дополнительной абсолютной погрешности	
преобразований цифрового сигнала в унифицированный выходной сигнал	
силы постоянного тока, вызванной изменением температуры окружающей	
среды от нормальной до любой температуры в пределах рабочих температур	
на каждые 10 °C, мА	±0,008
Вариация выходного сигнала, в долях от абсолютной погрешности	
измерений уровня	1,0

Окончание таблицы 3

Примечание - пределы допускаемой основной абсолютной погрешности измерений уровня по унифицированному выходному сигналу Δ_{S} рассчитывают по формуле (1):

$$\Delta \Sigma = \Delta + \Delta_{HI}, \tag{1}$$

где Δ - пределы допускаемой абсолютной погрешности измерений уровня по цифровому сигналу, мм;

 $\Delta_{\rm HI}$ - пределы допускаемой основной абсолютной погрешности преобразований цифрового сигнала в унифицированный выходной сигнал силы постоянного тока, мм, рассчитанные по формуле (2):

$$\Delta_{HI} = \frac{\Delta_I \cdot (HB - HH)}{I_B - I_{HI}} \tag{2}$$

где $\Delta_{\rm I}$ - пределы допускаемой основной абсолютной погрешности преобразований цифрового сигнала в унифицированный выходной сигнал силы постоянного тока, мA;

 I_H , I_B - нижний и верхний пределы унифицированного выходного сигнала, мА; H_B , H_H

- верхний и нижний пределы измерений уровня, мм.

Таблица 4 – Основные технические характеристики

Наименование характеристики	Значение
Параметры электрического питания:	
- номинальное напряжение постоянного тока, В	$24\pm0,48$
Потребляемая мощность, Вт, не более	5
Габаритные размеры, мм, не более:	
- высота	385
- диаметр	150
Macca, κΓ ¹⁾	от 1,4 до 3
Нормальные условия измерений:	
- температура окружающей среды, °С	от +15 до +25
- относительная влажность, %	от 30 до 80
- атмосферное давление, кПа	от 84,0 до 106,7
Рабочие условия измерений:	
- температура окружающей среды, °С:	от -40 до +70
- относительная влажность при температуре +35 °C, %, не более	95
- атмосферное давление, кПа	от 84 до 106,7
Маркировка взрывозащиты	1Ex d IIC T5 Gb X
Средняя наработка на отказ, ч, не менее	120000
Средний срок службы, лет, не менее	15

Знак утверждения типа

наносится на табличку, прикрепленную к корпусу уровнемера, способом лазерной гравировки, а также на руководство по эксплуатации и паспорт - типографским способом.

Комплектность средства измерений

Таблица 5 - Комплектность уровнемеров

Наименование	Обозначение	Количество
Уровнемер радарный «ЭЛЕМЕР-УР-31» ¹⁾	НКГЖ.407529.001-XXX ²⁾	1 шт.
Программное обеспечение	-	1 шт.
Комплект монтажных частей 3)	-	1 компл.

Окончание таблицы 5

Наименование	Обозначение	Количество
Уровнемеры радарные «ЭЛЕМЕР-УР-31».		
Руководство по эксплуатации	НКГЖ.407529.001РЭ	1 экз.
Уровнемеры радарные «ЭЛЕМЕР-УР-31». Паспорт	НКГЖ.407529.001- XXXПС ²⁾	1 экз.
Уровнемеры радарные «ЭЛЕМЕР-УР-31». Методика		
поверки	НКГЖ.407529.001МП	1 экз.

¹⁾ Исполнение уровнемера в соответствии с заказом.

Поверка

осуществляется по документу НКГЖ.407529.001МП «Уровнемеры радарные «ЭЛЕМЕР-УР-31». Методика поверки», утвержденному ООО «ИЦРМ» 17.09.2018 г.

Основные средства поверки:

- рабочий эталон единицы длины в области измерения уровня жидкости 2 разряда по ГОСТ 8.477-82 в диапазоне значений от 0 до $20\,\mathrm{m}$ с пределами допускаемой основной абсолютной погрешности $\pm 1\,\mathrm{mm}$;
- рулетка измерительная металлическая 2-го и 3-го классов точности Р20Н2Г (регистрационный номер в Федеральном информационном фонде 46391-11);
- калибратор-измеритель унифицированных сигналов прецизионный «ЭЛЕМЕР-ИКСУ-2012» (регистрационный номер в Федеральном информационном фонде 56318-14);
- мультиметр цифровой прецизионный Fluke 8508A (регистрационный номер в Федеральном информационном фонде 25984-14);
- уровнемер радиоволновой УЛМ-11 (регистрационный номер в Федеральном информационном фонде 16861-08).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых уровнемеров с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) в паспорт.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к уровнемерам радарным «ЭЛЕМЕР-УР-31»

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

ГОСТ 8.477-82 Государственная система обеспечения единства измерений (ГСИ). Государственная поверочная схема для средств измерений уровня жидкости.

ГОСТ 28725-90 Приборы для измерения уровня жидкостей и сыпучих материалов. Общие технические требования и методы испытаний.

ТУ 26.51.52-175-13282997-2018 Уровнемеры радарные «ЭЛЕМЕР-УР-31». Технические условия

²⁾ Обозначение в соответствии с исполнением уровнемера.

³⁾ Комплект монтажных частей в соответствии с заказом.

Изготовитель

Общество с ограниченной ответственностью Научно-производственное предприятие «ЭЛЕМЕР» (ООО НПП «ЭЛЕМЕР»)

ИНН 5044003551

Адрес: 124489, г. Москва, г. Зеленоград, проезд 4807, д. 7, стр. 1

Юридический адрес: 124460, г. Москва, г. Зеленоград, корп. 1145, н.п. 1

Телефон (факс): +7 (495) 987-12-38 (+7 (499) 735-02-59)

Web-сайт: <u>www.elemer.ru</u> E-mail: <u>elemer@elemer.ru</u>

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии»

Адрес: 117546, г. Москва, Харьковский проезд, д. 2, этаж 2, пом. I, ком. 35, 36

Телефон: +7 (495) 278-02-48

E-mail: info@ic-rm.ru

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311390 от 18.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2018 г.