ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Сибирь» по ЛПДС «Аремзяны» НПС «Аремзяны-2»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Сибирь» по ЛПДС «Аремзяны» НПС «Аремзяны-2» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень измерительно-информационные комплексы (далее ИИК), которые включают в себя трансформаторы тока (далее ТТ), трансформаторы напряжения (далее ТН) и счетчики активной и реактивной электроэнергии (далее счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-3.
- 2-й уровень измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных ЭКОМ-3000 (далее УСПД) и каналообразующую аппаратуру.
- 3-й уровень информационно-вычислительный комплекс (ИВК) ПАО «Транснефть» в части АО «Транснефть Сибирь» ЛПДС «Аремзяны» НПС «Аремзяны-2», включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), сервер точного времени ССВ-1Г и программное обеспечение (далее ПО) ПК «Энергосфера». Уровень является единым для всех АИИС КУЭ организаций системы ПАО «Транснефть», в том числе для системы автоматизированной информационно-измерительной коммерческого учета электрической энергии ОАО «АК «Транснефть» АИИС КУЭ ОАО «АК «Транснефть» (Рег. № 54083-13).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям измерительных цепей поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициентов трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
 - средняя на интервале времени 30 мин активная (реактивная) электрическая мощность.

Цифровой сигнал с выходов счетчиков поступает на вход УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем — третьем уровне системы выполняется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации — участники оптового рынка электрической энергии и мощности через каналы связи.

Данные хранятся в сервере БД. Последующее отображение собранной информации происходит при помощи АРМ. Данные с ИВК передаются на АРМ, установленные в соответствующих службах, по сети Ethernet. Полный перечень информации, получаемой на АРМ, определяется техническими характеристиками многофункциональных счетчиков и уровнем доступа АРМ к базе данных и сервера БД. ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ПАО «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Данные по группам точек поставки в организации-участники ОРЭМ и РРЭ, в том числе АО «АТС», АО «СО ЕЭС» и смежным субъектам, передаются с ИВК с учетом агрегации данных по всем точкам системы автоматизированной информационно-измерительная коммерческого учета электрической энергии ОАО «АК «Транснефть» - АИИС КУЭ ОАО «АК »Транснефть» (Рег. № 54083-13) с учетом полученных данных по точкам измерений, входящим в настоящую систему и АИИС КУЭ смежных субъектов в виде хml-файлов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка, в том числе с использованием ЭЦП субъекта рынка.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (счетчиков, УСПД и ИВК). Задача синхронизации времени решается использованием службы единого координированного времени UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация часов ИВК АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г (Рег. № 39485-08), входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети ТСР/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление данных на сервере ИВК. Резервный сервер синхронизации ИВК используется при выходе из строя основного сервера.

В качестве устройства синхронизации времени на уровне ИВКЭ используется УСПД со встроенным ГЛОНАСС/GPS-модулем. Пределы допускаемой абсолютной погрешности внутренних часов (с коррекцией времени по источнику точного времени с использованием PPS сигнала) ± 1 мс.

Коррекция внутренних часов УСПД осуществляется по сигналу точного времени ГЛОНАСС/GPS-модуля. В случае неисправности УССВ встроенного в УСПД имеется возможность коррекции внутренних часов УСПД от уровня ИВК ПАО «Транснефть».

Сравнение показаний часов счетчиков и УСПД происходит при обращении к счетчикам. Коррекция показаний часов счетчиков осуществляется при расхождении показаний часов счетчиков и УСПД на величину более чем ± 1 с, но не чаще одного раза в сутки.

Журналы событий счетчиков, УСПД и сервера ИВК отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение ПК «Энергосфера» версии не ниже 8.0. Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню - «высокий» в соответствии Р 50.2.077-2014. Метрологически значимая часть ПО приведена в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные признаки	Значение	
Ижантифинационная манистрания ПО	ПК «Энергосфера»	
Идентификационное наименование ПО	Библиотека pso_metr.dll	
Номер версии (идентификационный номер) ПО	1.1.1.1	
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B	
Алгоритм вычисления цифрового	MD5	
идентификатора ПО	WID3	

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические и технические характеристики приведены в таблицах 2-4.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические

характеристики

	эактеристики	Измерительные компоненты					
Номер ИК	Наименование объекта	TT	ТН	Счётчик	успд	ИВК	УССВ уровня ИВК
1	2	3	4	5	6	7	8
		ЛПДС «Аре	емзяны» НПС «Аре	мзяны-2»			
1	3РУ-10 кВ ЛПДС «Аремзяны» НПС «Аремзяны-2», 1СШ 10 кВ, яч.№7	ТЛО-10 Кл. т. 0,5S Коэф. тр. 1500/5 Рег. № 25433-11	ЗНОЛП-10У2 Кл. т. 0,5 Коэф. тр. 10000:√3/100:√3 Рег. № 46738-11	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-12	M-3000 17049-14	ınt BL460	9485-08
2	3РУ-10 кВ ЛПДС «Аремзяны» НПС «Аремзяны-2», 2СШ 10 кВ, яч.№8	ТЛО-10 Кл. т. 0,5S Коэф. тр. 1500/5 Рег. № 25433-11	ЗНОЛП-10У2 Кл. т. 0,5 Коэф. тр. 10000:√3/100:√3 Рег. № 46738-11	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-12	ЭКОМ-3000 Per. № 17049-	HP ProLiant BL460	CCB-1Γ Per. № 39485-08

Окончание таблицы 2

1	2	3	4	5	6	7	8
3	3РУ-10 кВ ЛПДС «Аремзяны» НПС «Аремзяны-2», 1СШ 10 кВ, яч.№17	ТЛО-10 Кл. т. 0,5S Коэф. тр. 150/5 Рег. № 25433-11	ЗНОЛП-10У2 Кл. т. 0,5 Коэф. тр. 10000:√3/100:√3 Рег. № 46738-11	СЭТ- 4ТМ.03М.01 Кл. т. 0,5S/1,0 Рег. № 36697-12	I-3000 7049-14	: BL460	.В-1Г 39485-08
4	3РУ-10 кВ ЛПДС «Аремзяны» НПС «Аремзяны-2», 2СШ 10 кВ, яч.№18	ТЛО-10 Кл. т. 0,5S Коэф. тр. 150/5 Рег. № 25433-11	ЗНОЛП-10У2 Кл. т. 0,5 Коэф. тр. 10000:√3/100:√3 Рег. № 46738-11	СЭТ- 4ТМ.03М.01 Кл. т. 0,5S/1,0 Рег. № 36697-17	ЭКОМ-3000 Per. № 17049-	HP ProLiant BL460	CCB-1] Per. № 394{

Примечания:

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, при условии, что АО «Транснефть Сибирь» не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 2. Допускается замена УСПД и УССВ на аналогичные утвержденных типов.
- 3. Замена оформляется техническим актом в установленном на АО «Транснефть Сибирь» АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть

Таблица 3 – Основные метрологические характеристики ИК

Tuomida 5 onobible merponerii reedii aapakrepii riidii riid				
Номер ИК	Вид электрической	Границы основной	Границы погрешности	
	энергии погу	погрешности,	в рабочих условиях,	
		(±d), %	(±d),%	
1-2	Активная	1,1	3,0	
1-2	Реактивная	2,6	4,9	
3-4	Активная	1,2	3,4	
	Реактивная	2,8	6,4	
Пределы допускаемой погрешности СОЕВ, с			±5	

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии (получасовая).
- 2~B качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности $P=0,\!95.$

Погрешность в рабочих условиях указана для $\cos j=0.8$ инд, I=0.02 $I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1 - 4 от 0 до плюс 40 °C.

Основные технические характеристики ИК приведены в таблице 4.

Таблица 4 – Основные технические характеристики ИК	
Наименование характеристики	Значение
Количество измерительных каналов	4
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2 до 120
- коэффициент мощности	от 0,5 $_{\rm инд}$. до 0,8 $_{\rm емк}$.
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °С:	от -40 до +65
- температура окружающей среды в месте расположения	
сервера, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчика СЭТ-4ТМ.03М, СЭТ-4ТМ.03М.01	165000
для электросчетчика СЭТ-4ТМ.03М.01 (для рег. № 36697-17)	220000
- среднее время восстановления работоспособности, ч	2
УСПД:	
- среднее время наработки на отказ не менее, ч	
для УСПД ЭКОМ-3000	100000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	2264599
- среднее время восстановления работоспособности, ч	0,5
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сутки, не менее	114
- при отключении питания, лет, не менее	45
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление за	
месяц по каждому каналу, суток, не менее	45
- сохранение информации при отключении питания, лет, не	
менее	10
Сервер:	
- хранение результатов измерений и информации состояний средств	
измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Сибирь» по ЛПДС «Аремзяны» НПС «Аремзяны-2» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица5 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
Трансформатор тока	ТЛО-10	10
Трансформатор напряжения	3НОЛП-10У2	6
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	2
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.01	2
Устройство сбора и передачи данных	ЭКОМ-3000	1
Сервер синхронизации времени	CCB-1Γ	2
Сервер	HP ProLiant BL460	1
Программное обеспечение	ПК «Энергосфера»	1
Методика поверки	МП 072-2018	1
Паспорт-Формуляр	НС.2017.АСКУЭ.00391 ФО	1

Поверка

осуществляется по документу МП 072-2018 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Сибирь» по ЛПДС «Аремзяны» НПС «Аремзяны-2». Измерительные каналы. Методика поверки», утвержденному ООО «Спецэнергопроект» 09.11.2018 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2018. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2018. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3598-2018 «ГСИ. Методика измерений потерь напряжения в линиях соединения счетчика с трансформатором напряжения в условиях эксплуатации»;
- счетчиков СЭТ-4ТМ.03М, СЭТ-4ТМ.03М.01 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- счетчиков СЭТ-4ТМ.03М.01 по документу ИЛГШ.411152.145РЭ1 «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки», согласованному с ФБУ «Нижегородский ЦСМ» 03 апреля 2017 г.;
- УСПД ЭКОМ-3000 по документу ПБКМ.421459.007 МП «Устройства сбора и передачи данных «ЭКОМ-3000». Методика поверки», согласованному с ФГУП «ВНИИМС» 20 апреля 2014 г.;
- ССВ-1 Γ по документу «Источники частоты и времени/ серверы точного времени ССВ-1 Γ . Методика поверки.» ЛЖАР.468150.003-08 МП, утвержденным Γ ЦИ СИ «Связь Γ ест» ФГУП ЦНИИС в ноябре 2008 Γ .;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 27008-04;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60° С, дискретность $0,1^{\circ}$ С; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Сибирь» по ЛПДС «Аремзяны» НПС «Аремзяны-2», аттестованном ООО «Спецэнергопроект», аттестат об аккредитации № RA.RU.312236 от 20.07.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Сибирь» ЛПДС «Аремзяны» НПС «Аремзяны-2»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «Транснефть-Сибирь» (АО «Транснефть-Сибирь») ИНН 7201000726

Адрес: 625027, г. Тюмень, ул. Республики, 139 Телефон/факс: (3452) 322-710/(3452) 202-597

E-mail: <u>info@sibnefteprovod.ru</u>

Заявитель

Общество с ограниченной ответственностью «НексусСистемс»

(ООО «НексусСистемс»)

Адрес: 450022, Республика Башкортостан, г. Уфа, ул. Менделеева, д. 134/7

Телефон/факс: (347)291-26-90/(347)216-40-18

E-mail: <u>info@nexussystems.ru</u> Web-сайт: <u>http://nexussystems.ru/</u>

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, этаж 4, пом. I, комн. № 6, 7

Телефон: (985) 992-27-81

E-mail: info.spetcenergo@gmail.com

Аттестат аккредитации ООО «Спецэнергопроект» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312426 от 30.01.2018 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			А.В. Кулешов
	М.п.	« »	2018 г.