ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Дружба» по объекту НПС «Новоселово»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Дружба» по объекту НПС «Новоселово» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень измерительно-информационный комплекс (ИИК), включающий в себя трансформаторы тока (ТТ), трансформаторы напряжения (ТН) и многофункциональные счетчики активной и реактивной электроэнергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.
- 2-й уровень информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, серверы баз данных (БД) АИИС КУЭ, автоматизированные рабочие места (АРМ) оператора, серверы синхронизации времени и программное обеспечение ПК «Энергосфера» (далее ПО ПК «Энергосфера»).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям измерительных цепей поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициентов трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
 - средняя на интервале времени 30 мин активная (реактивная) электрическая мощность.

Цифровой сигнал с выходов счетчиков поступает на верхний уровень системы, где осуществляется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах APM и передача данных в организации – участники оптового рынка электрической энергии и мощности через каналы связи.

Данные хранятся в сервере БД. Последующее отображение собранной информации происходит при помощи АРМ. Данные с ИВК передаются на АРМ, установленные в соответствующих службах, по сети Ethernet. Полный перечень информации, получаемой на АРМ, определяется техническими характеристиками многофункциональных счетчиков и уровнем доступа АРМ к базе данных и сервера БД. ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ПАО «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Данные по группам точек поставки в организации-участники ОРЭМ и РРЭ, в том числе АО «АТС», АО «СО ЕЭС» и смежным субъектам, передаются с ИВК с учетом агрегации данных по всем АИИС КУЭ ОАО «АК Транснефть» (регистрационный номер 54083-13 в Федеральном информационном фонде) с учетом полученных данных по точкам измерений, входящим в настоящую систему и АИИС КУЭ смежных субъектов в виде хml-файлов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка, в том числе с использованием ЭЦП субъекта рынка.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (счетчиков, и ИВК). Задача синхронизации времени решается использованием службы единого координированного времени UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация часов ИВК АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г (регистрационный номер 39485-08 в Федеральном информационном фонде (Рег. №)), входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети ТСР/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление данных на сервере ИВК.

Сравнение показаний часов счетчиков и ИВК происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация часов счетчиков от ИВК осуществляется при расхождении показаний часов счетчиков и ИВК на величину более чем ± 1 с.

Журналы событий счетчиков, и сервера ИВК отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии не ниже 8.0. Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО приведена в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные признаки	Значение	
Идентификационное наименование ПО	ПК «Энергосфера»	
идентификационное наименование по	Библиотека pso_metr.dll	
Номер версии (идентификационный номер) ПО	1.1.1.1	
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B	
Алгоритм вычисления цифрового	MD5	
идентификатора ПО	MIDS	

Метрологические и технические характеристики

Состав измерительных каналов и их основные метрологические и технические характеристики приведены в таблицах 2, 3, 4.

Основные технические характеристики ИК приведены в таблице 5.

Таблица 2 – Состав ИК АИИС КУЭ

	1	— Состав их Аййс куэ Измерительные компоненты				
Номер ИК	Наименование объекта			УСПД/ИВК/ УСВ уровня ИВК		
1	2	3	4	5	6	
1	ЗРУ-6кВ НПС «Новоселово», І с.ш. 6кВ, яч.1	ТЛШ- 10-1У3 КТ 0,5S Ктт=2000/5 Рег. № 11077-03	ЗНОЛ.0 6-6У3 КТ 0,5 Ктн=6000:√3/ 100:√3 Рег. № 3344-04	CЭT-4TM.03M KT 0,2S/0,5 Per. № 36697-08		
2	ЗРУ-6кВ НПС «Новоселово», II с.ш. 6кВ, яч.25	ТЛШ- 10-1У3 КТ 0,5S Ктт=2000/5 Рег. № 11077-03	ЗНОЛ.0 6-6У3 КТ 0,5 Ктн=6000:√3/ 100:√3 Рег. № 3344-04	CЭT-4TM.03 KT 0,2S/0,5 Per. № 27524-04		
3	ЗРУ-6кВ НПС «Новоселово», III с.ш. 6кВ, яч.6	ТЛШ- 10-1У3 КТ 0,5S Ктт=2000/5 Рег. № 11077-03	ЗНОЛ.0 6-6У3 КТ 0,5 Ктн=6000:√3/ 100:√3 Рег. № 3344-04	CЭT-4TM.03 KT 0,2S/0,5 Per. № 27524-04	HP ProLiant BL460 CCB-1Γ	
4	ЗРУ-6кВ НПС «Новоселово», IV с.ш. 6кВ, яч.30	ТЛШ- 10-1У3 КТ 0,5S Ктт=2000/5 Рег. № 11077-03	ЗНОЛ.0 6-6У3 КТ 0,5 Ктн=6000:√3/ 100:√3 Рег. № 3344-04	CЭT-4TM.03 KT 0,2S/0,5 Per. № 27524-04	Per. № 39485- 08	
5	ПС 110/10/6кВ «Новоселово», ОРУ-110кВ, ВЛ-110кВ «Новоселово-1	TG 145 KT 0,2S Ktt=300/5 Per. № 15651-96	CPA 123 KT 0,5 KTH=110000:√3/ 100:√3 Per. № 15852-96	CЭT-4TM.03M KT 0,2S/0,5 Per. № 36697-17		
6	ПС 110/10/6кВ «Новоселово», ОРУ-110кВ, ВЛ-110кВ «Новоселово-2»	TG 145 KT 0,2S Ktt=300/5 Per. № 15651-96	CPA 123 KT 0,5 KTH=110000:√3/ 100:√3 Per. № 15852-96	CЭT-4TM.03M KT 0,2S/0,5 Per. № 36697-12		

Продолжение таблицы 2

1	2	3	4	5	6
7	ПС 110/10/6кВ «Новоселово», КРУН-10кВ, І с.ш. 10кВ, яч.2, Ввод №1 от 1Т	ТОЛ-10-I КТ 0,5 Ктт=1000/5 Рег. № 15128-03 Рег. № 15128-07	НАМИ-10 КТ 0,5 Ктн=110000:√3/ 100:√3 Рег. № 11094-87	CЭT- 4TM.03M.01 KT 0,5S/1,0 Per. № 36697-12	
8	ПС 110/10/6кВ «Новоселово», КРУН-10кВ, ІІ с.ш. 10кВ, яч.8, Ввод №2 от 2Т	ТОЛ-10-I КТ 0,5 Ктт=1000/5 Рег. № 15128- 03 Рег. № 15128- 07	НАМИ-10 КТ 0,5 Ктн=110000:√3/ 100:√3 Рег. № 11094-87	CЭT- 4TM.03M.01 KT 0,5S/1,0 Per. № 36697-12	

Примечания:

- 1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, при условии, что АО «Транснефть Дружба» АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 2. Замена оформляется техническим актом в установленном на АО «Транснефть Дружба» АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть

Таблица 3 – Метрологические характеристики ИК АИИС КУЭ (активная электрическая энергия и средняя мощность)

п ородини мощноству	Значение силы тока	Границы допускаемой относительной погрешности измерения при доверительной вероятности 0,95, %			
Номер ИК		В нормальных		В рабочих	
		условиях эксплуатации		условиях эксплуатации	
		$\cos \varphi = 1,0$	$\cos \varphi = 0.5$	$\cos \varphi = 1,0$	$\cos \varphi = 0.5$
1	I=0,1·Ін	±1,0	±2,7	±1,2	±2,8
(TT 0,5S; TH 0,5; Cч1 0,2S)	I=1,0·Ін	±0,9	±2,2	±1,1	±2,3
2–4	І=0,1∙Ін	±1,0	±2,7	±1,2	±2,8
(TT 0,5S; TH 0,5; Cu2 0,2S)	І=1,0∙Ін	±0,9	±2,2	±1,1	±2,3
5, 6	I=0,1·I _H	±0,8	±1,5	±1,0	±1,8
(TT 0,2S; TH 0,5; Cч1 0,2S)	I=1,0·Ін	±0,7	±1,4	±1,0	±1,7
7, 8	I=0,1·Ін	±1,6	±4,6	±2,1	±5,0
(ТТ 0,5; ТН 0,5; Сч1 0,5Ѕ)	I=1,0·Ін	±1,0	±2,3	±1,7	±3,0
Сч1 обозначает счетчик СЭТ-4ТМ.03М; Сч2 обозначает счетчик СЭТ-4ТМ.03					

Таблица 4 – Метрологические характеристики ИК АИИС КУЭ (реактивная электрическая энергия и средняя мощность)

энергия и средняя мощноств)					
		Границы допускаемой относительной погрешности			
	Значение силы тока	измерения при доверительной вероятности 0,95, %			
Номер ИК		В нормальных		В рабочих	
		условиях эксплуатации		условиях эксплуатации	
		$\sin \varphi = 0.866$	$\sin \varphi = 0.6$	$\sin \varphi = 0.866$	$\sin \varphi = 0.6$
1	I=0,1·Ін	±1,4	±2,2	±2,1	±2,8
(ТТ 0,5S; ТН 0,5; Сч1 0,5)	I=1,0·Ін	±1,2	±1,9	±2,0	±2,6
2–4	I=0,1·Ін	±1,4	±2,2	±1,8	±2,5
(ТТ 0,5S; ТН 0,5; Сч2 0,5)	I=1,0·Ін	±1,2	±1,8	±1,5	±2,1
5, 6	I=0,1·Ін	±1,0	±1,4	±1,8	±2,3
(ТТ 0,2S; ТН 0,5; Сч1 0,5)	I=1,0·Ін	±1,0	±1,3	±1,8	±2,2
7, 8	I=0,1·Ін	±2,4	±3,8	±4,0	±5,2
(ТТ 0,5; ТН 0,5; Сч1 1,0)	I=1,0·Ін	±1,5	±2,1	±3,6	±4,1
Сч1 обозначает счетчик СЭТ-4ТМ.03М; Сч2 обозначает счетчик СЭТ-4ТМ.03					

Таблица 5 – Основные технические характеристики ИК	
Наименование характеристики	Значение
1	2
Количество измерительных каналов	8
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до101
- ток, % от I _{ном}	от 100 до 120
- коэффициент мощности	0,9
- температура окружающей среды для ТТ, °С	от -45 до +50
- температура окружающей среды для ТН, °С	от -60 до +60
- температура окружающей среды для счетчиков, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, $\%$ от $U_{\text{ном}}$	от 90 до 110
- ток, $\%$ от $\mathrm{I}_{\scriptscriptstyle \mathrm{HOM}}$	от 2 до 120
- коэффициент мощности cosj (sinj)	от 0,5 инд до 0,8 емк
- температура окружающей среды для ТТ и ТН, °С	от -45 до +50
- температура окружающей среды для счетчиков, °С	от -5 до +40
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики СЭТ-4ТМ.03М:	
- среднее время наработки на отказ, ч	165000
- среднее время восстановления работоспособности, ч	2
Счетчики СЭТ-4ТМ.03:	
- среднее время наработки на отказ, ч	90000
- среднее время восстановления работоспособности, ч	2
Счетчики СЭТ-4ТМ.03М.01:	
- среднее время наработки на отказ, ч	165000
- среднее время восстановления работоспособности, ч	2
CCB-1Γ:	
- среднее время наработки на отказ, ч, не менее	15000
- среднее время восстановления работоспособности, ч	48

Продолжение таблицы 5

1	2
Сервер БД:	
- среднее время наработки на отказ, ч, не менее	264599
- среднее время восстановления работоспособности, ч	0,5
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сутки, не менее	113,7
- при отключении питания, лет, не менее	10
Сервер БД:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5
Пределы допускаемой погрешности СОЕВ, с	±5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал сервера ИВК:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере ИВК;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера ИВК;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера ИВК.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- сервере ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений приращений электроэнергии на интервалах 30 мин (функция автоматизирована);
- сбора результатов измерений не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 - Комплектность АИИС КУЭ

Наименование	Тип	Количество, шт.
1	2	3
Трансформатор тока	ТЛШ- 10-1У3	12
Трансформатор тока	TG 145	6
Трансформатор тока	ТОЛ-10-І	4
Трансформатор напряжения	3НОЛ.06-6У3	12
Трансформатор напряжения	CPA 123	6
Трансформатор напряжения	НАМИ- 10	2
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03	3
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.01	2
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	3
Сервер синхронизации времени	CCB-1Γ	2
Сервер	Hewlett Packard	2
Программное обеспечение	ПК «Энергосфера»	1
Паспорт-Формуляр	НС.2018.АСКУЭ.00504 ФО	1

Поверка

осуществляется по документу МИ 3000-2018 «Системы автоматизированные информационноизмерительные коммерческого учета электрической энергии. Методика поверки».

Основные средства поверки:

- мультиметр «Ресурс-ПЭ» (регистрационный номер 33750-07 в Федеральном информационном фонде);
- радиочасы PЧ-011/2 (регистрационный номер 35682-07 в Федеральном информационном фонде);
 - − ТТ по ГОСТ 8.217-2003;
 - TH по МИ 2845-2003, МИ 2925-2003 и/или ГОСТ 8.216-2011;
- Счетчики СЭТ-4ТМ.03 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03. Руководство по эксплуатации. Методика поверки» ИЛГШ.411151.124 РЭ1, согласованному с ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 сентября 2004 г.;
- Счетчики СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- ССВ-1 Γ по документу «Источники частоты и времени / серверы синхронизации времени ССВ-1 Γ . Методика поверки», ЛЖАР.468150.003-08 МП, утвержденным Γ ЦИ СИ «СвязьТест» Φ ГУП ЦНИИС в ноябре 2008 Γ .;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого средства измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Дружба» по НПС «Новоселово», аттестат аккредитации ФБУ «Пензенский ЦСМ» № 01.00230-2013 от $17.04.2017 \, \Gamma$.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Дружба» по НПС «Новоселово»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «Транснефть-Дружба» (АО «Транснефть-Дружба»)

ИНН 3235002178

Адрес: 241020, г. Брянск, ул. Уральская, д. 113 Телефон (факс): (846) 332-83-17; (846) 333-27-16

E-mail: uztnp@aktnp.ru

Заявитель

Акционерное общество «СКАД тех» (АО «СКАД тех»)

ИНН 7722798039

Адрес: 129090, г. Москва, Олимпийский проспект, д.16, стр. 5

Телефон: (495) 374-80-32 E-mail: info@scad.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Пензенской области» (ФБУ «Пензенский ЦСМ»)

Адрес: 440039, г. Пенза, ул. Комсомольская, д. 20

Телефон (факс): (8412) 49-82-65 Web-сайт: <u>www.penzacsm.ru</u>

E-mail: pcsm@sura.ru

Аттестат аккредитации ФБУ «Пензенский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311197 от 24.07.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2019 г.