ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества и показателей качества нефти 213 НГДУ «Нурлатнефть»

Назначение средства измерений

Система измерений количества и показателей качества нефти 213 НГДУ «Нурлатнефть» (далее — СИКН) предназначена для измерений массы нефти при расчетно-коммерческих операциях между НГДУ «Нурлатнефть» и НГДУ «Альметьевнефть» ПАО «Татнефть».

Описание средства измерений

Принцип действия СИКН основан на использовании прямого метода динамических измерений массы брутто нефти с помощью счетчиков-расходомеров массовых (далее – МПР). Массу нетто нефти определяют как разность массы брутто нефти и массы балласта. Массу балласта определяют как сумму масс воды, хлористых солей и механических примесей в нефти.

Конструктивно СИКН состоит из входного коллектора, блока фильтров (далее – БФ), блока измерительных линий (далее – БИЛ), блока измерений показателей качества нефти (далее – БИК), выходного коллектора, узла подключения передвижной поверочной установки (далее – ПУ), системы сбора и обработки информации (далее – СОИ). Технологическая обвязка и запорная арматура СИКН не допускает неконтролируемые пропуски и утечки нефти.

На входном коллекторе СИКН установлены следующие средства измерений (далее – СИ) (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений) и технические средства:

- преобразователь давления измерительный 3051 (регистрационный № 14061-10);
- манометр для местной индикации давления.

БФ состоит из трех линий.

На каждой линии БФ установлены следующие СИ и технические средства:

- фильтр тонкой очистки;
- манометры для местной индикации давления.

БИЛ состоит из трех рабочих измерительных линий (далее – ИЛ) и одной контрольно-резервной ИЛ.

На каждой ИЛ установлены следующие СИ и технические средства:

- счетчик-расходомер массовый Micro Motion (регистрационный № 45115-10);
- манометр для местной индикации давления.

БИК выполняет функции оперативного контроля показателей качества нефти и автоматического отбора проб для лабораторного контроля показателей качества нефти. Отбор представительной пробы нефти в БИК осуществляется по ГОСТ 2517-2012 через пробозаборное устройство.

В БИК установлены следующие СИ и технические средства:

- преобразователь плотности и вязкости измерительный модели 7827 (регистрационный № 15642-96);
- преобразователь плотности измерительный модели 7835 (регистрационный № 15644-96);
 - влагомер нефти поточный УДВН-1пм (регистрационный № 14557-05);
 - счетчик турбинный НОРД-М (регистрационный № 5638-02);
- преобразователь измерительный 644 (регистрационный № 14683-09) в комплекте с термопреобразователем сопротивления платиновым серии 65 (регистрационный № 22257-11);
 - преобразователь давления измерительный 3051 (регистрационный № 14061-99);
 - два пробоотборника автоматических Проба-1М для автоматического отбора проб;
 - пробоотборник ручной для ручного отбора проб;
 - место для подключения пикнометрической установки;
 - УОСГ-100;

- манометры и термометры для местной индикации давления и температуры.

На выходном коллекторе СИКН установлены следующие СИ и технические средства:

- преобразователь измерительный 644 (регистрационный № 14683-09) в комплекте с термопреобразователем сопротивления платиновым серии 65 (регистрационный № 22257-05);
 - преобразователь давления измерительный 3051 (регистрационный № 14061-10);
 - манометр и термометр для местной индикации давления и температуры.

Узел подключения передвижной ПУ предназначен для проведения поверки и контроля метрологических характеристик (далее – КМХ) МПР по передвижной ПУ.

СОИ обеспечивает сбор, хранение и обработку измерительной информации. В состав СОИ входят: два контроллера измерительно-вычислительных OMNI 3000/6000 (регистрационный № 15066-09), осуществляющих сбор измерительной информации и формирование отчетных данных, и автоматизированное рабочее место оператора, оснащенное монитором, клавиатурой и печатающим устройством.

СИКН обеспечивает выполнение следующих функций:

- автоматическое измерение массового расхода нефти в рабочем диапазоне (т/ч);
- автоматическое измерение массы брутто нефти в рабочем диапазоне расхода (т);
- автоматическое измерение объемного влагосодержания (%), плотности (кг/м 3), вязкости (сСт), температуры (°С) и давления (МПа);
- вычисление массы нетто нефти (т) с использованием результатов измерений содержания воды, хлористых солей и механических примесей в нефти;
 - поверку и КМХ МПР по передвижной ПУ;
- КМХ МПР, установленого на рабочей ИЛ, по МПР, установленному на контрольнорезервной ИЛ;
 - автоматический отбор объединенной пробы нефти;
- регистрацию и хранение результатов измерений, формирование интервальных отчётов, протоколов, актов приема-сдачи нефти, паспортов качества нефти;
 - защита информации от несанкционированного доступа.

Для исключения возможности несанкционированного вмешательства, которое может влиять на показания СИ, входящих в состав СИКН, обеспечена возможность пломбирования в соответствии с МИ 3002-2006, нанесения знаков поверки на СИ в соответствии с их методиками поверки.

Программное обеспечение

Программное обеспечение (далее – ΠO) СИКН разделено на два структурных уровня – верхний и нижний.

К ПО нижнего уровня относится ПО контроллеров измерительно-вычислительных ОМNI 3000/6000 (далее – контроллеры), обеспечивающее общее управление ресурсами вычислительного процессора, базами данных и памятью, интерфейсами контроллера, проведение вычислительных операций, хранение калибровочных таблиц, передачу данных на верхний уровень. К метрологически значимой части ПО нижнего уровня относится операционная система контроллеров.

К ПО верхнего уровня относится программа автоматизированного рабочего места – «Rate APM оператора УУН» (далее – APM оператора), выполняющая функции передачи данных с нижнего уровня, отображения на станции оператора функциональных схем и технологических параметров объекта, приема и обработки управляющих команд оператора, формирования отчетных документов, вычисления массы нетто нефти.

ПО СИКН защищено от несанкционированной модификации, обновления (загрузки), удаления и иных преднамеренных изменений измеренных (вычисленных) данных и метрологически значимой части ПО с помощью системы паролей, ведения внутреннего журнала фиксации событий. Уровень защиты ПО СИКН «средний» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПО СИКН

Идентификационные данные (признаки)	Значение		
идентификационные данные (признаки)	АРМ оператора	контроллеры	
Идентификационное наименование ПО	«Rate APM		
идентификационное наименование по	оператора УУН»	-	-
Номер версии (идентификационный номер) ПО	2.4.1.1	24.75.01	24.75.01
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	F0737B4F	EBE1	0942
Алгоритм вычисления цифрового идентификатора ПО	CRC32	CRC-16	CRC-16

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений массового расхода, т/ч	от 20 до 800
Пределы допускаемой относительной погрешности при	
измерении массы брутто нефти, %	±0,25
Пределы допускаемой относительной погрешности при	
измерении массы нетто нефти, %	±0,35

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Измеряемая среда	нефть товарная
Плотность измеряемой среды, кг/м ³	от 870 до 940
Температура измеряемой среды, °С	от +25 до +45
Давление измеряемой среды, МПа	от 1,7 до 4,0
Массовая доля воды, %, не более	0,5
Массовая концентрация хлористых солей, мг/дм ³ , не более	100
Массовая доля механических примесей, %, не более	0,05
Параметры электропитания, В/Гц	380±38/220±22; 50±1
Условия эксплуатации:	
- температура окружающей среды, °С	от -47 до +38
- относительная влажность, %	от 20 до 90
- атмосферное давление, кПа	от 100 до 104
Режим работы СИКН	непрерывный
Средний срок службы, лет	15
Средняя наработка на отказ, ч	20 000

Знак утверждения типа

наносится на титульный лист инструкции по эксплуатации СИКН типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Система измерений количества и показателей качества нефти 213 НГДУ «Нурлатнефть», зав. №01	-	1 шт.
Инструкция по эксплуатации СИКН	-	1 экз.
Инструкция. ГСИ. Система измерений количества и показателей качества нефти 213 НГДУ «Нурлатнефть». Методика поверки	НА.ГНМЦ.0239- 18 МП	1 экз.

Поверка

осуществляется по документу НА.ГНМЦ.0239-18 МП «Инструкция. ГСИ. Система измерений количества и показателей качества нефти 213 НГДУ «Нурлатнефть». Методика поверки», утверждённому ОП ГНМЦ АО «Нефтеавтоматика» 15.06.2018 г.

Основные средства поверки:

- рабочий эталон 2-го разряда в соответствии с частью 2 Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, утвержденной приказом Росстандарта от 07.02.2018 г. № 256 в диапазоне расходов, соответствующему диапазону расходов СИКН;
- средства поверки в соответствии с документами на поверку СИ, входящих в состав СИКН.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемой СИКН с требуемой точностью.

Знак поверки наносится на свидетельство о поверке СИКН.

Сведения о методиках (методах) измерений

представлены в документе «ГСИ. Масса нефти. Методика измерений системой измерений количества и показателей качества нефти №213 НГДУ «Нурлатнефть» ПАО «Татнефть», ФР.1.28.2018.30469.

Нормативные документы, устанавливающие требования к системе измерений количества и показателей качества нефти 213 НГДУ «Нурлатнефть»

Приказ Минэнерго России от 15.03.2016 № 179 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений, выполняемых при учете используемых энергетических ресурсов, и обязательных метрологических требований к ним, в том числе показателей точности измерений»

Приказ Росстандарта от 07.02.2018 г. № 256 «Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости»

Изготовитель

Общество с ограниченной ответственностью «ЭнергоТехПроект» (ООО «ЭнергоТехПроект»)

ИНН 1650149225

Адрес: 423810, Республика Татарстан, г. Набережные Челны, пр. Московский, д. 118

Телефон: +7 (855) 259-95-33 Факс: +7 (855) 259-95-33

Заявитель

Общество с ограниченной ответственностью «Татинтек» (ООО «Татинтек»)

Адрес: 423457, Республика Татарстан, г. Альметьевск, ул. Мира, 4

Телефон: +7 (8553) 314-707 Факс: +7 (8553) 314-709 E-mail: info@tatintec.ru

Испытательный центр

Акционерное общество «Нефтеавтоматика» (АО «Нефтеавтоматика») Адрес: 420029, Республика Татарстан, г. Казань, ул. Журналистов, д. 2а

Телефон: +7 (843) 567-20-10, 8-800-700-78-68

Факс: +7 (843) 567-20-10

E-mail: gnmc@nefteavtomatika.ru

Аттестат аккредитации AO «Нефтеавтоматика» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311366 от 27.07.2017 г.

М.п.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

	А.В. Кулешов
« »	2019 г.