ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Транссервисэнерго» (ООО «СКХ»)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Транссервисэнерго» (ООО «СКХ») (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчик активной и реактивной электрической энергии (счетчик), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень — информационно-вычислительный комплекс (ИВК) с функциями информационно-вычислительного комплекса электроустановки (ИВКЭ), включающий в себя сервер АО «Транссервисэнерго» с программным обеспечением (ПО) «АльфаЦЕНТР», автоматизированные рабочие места персонала (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчика по проводным линиям связи поступает на входы GSM-модема, далее по каналам связи стандарта GSM поступает на сервер АО «Транссервисэнерго», где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

Передача информации от сервера АО «Транссервисэнерго» в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта оптового рынка электроэнергии (ОРЭ), в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде хml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

Результаты измерений электроэнергии передаются в целых числах кВт·ч и соотнесены с единым календарным временем.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчика, часы сервера. СОЕВ имеет доступ к серверу синхронизации шкалы времени по протоколу NTP – NTP-серверу ФГУП «ВНИИФТРИ», обеспечивающему передачу точного времени через глобальную сеть Интернет. Синхронизация системного времени NTP-серверов первого уровня осуществляется от сигналов шкалы времени Государственного первичного эталона времени и частоты. Погрешность синхронизации системного времени NTP-серверов первого уровня относительно шкалы времени UTC (SU) не превышает 10 мс.

Сравнение показаний часов сервера с часами NTP-сервера, передача точного времени через глобальную сеть интернет осуществляется с помощью модуля ПО «АльфаЦЕНТР» (АС_Т) с использованием протокола NTP версии 4.0 в соответствии с международным стандартом сетевого взаимодействия RFC-5905. Контроль показаний времени часов сервера осуществляется по запросу каждые 30 минут, коррекция часов осуществляется независимо от величины расхождений.

Сравнение часов счетчика с часами сервера осуществляется во время сеанса связи со счетчиками (1 раз в сутки). Корректировка часов счетчика выполняется автоматически при расхождении с часами сервера на величину ± 2 с, но не чаще одного раза в сутки.

Журналы событий счетчика и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР», имеющее сертификат соответствия № ТП 031-15 от 12.03.2015 г. в Системе добровольной сертификации программного обеспечения средств измерений. Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 – Идентификационные данные ПО «АльфаЦЕНТР»

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	ac_metrology.dll		
Номер версии (идентификационный номер) ПО	не ниже 15.07		
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

Метрологические и технические характеристики

Таблица 2 — Состав ИК АИИС КУЭ и их метрологические характеристики

		Измерительные компоненты					Метрологические характеристики ИК	
Но мер ИК		TT	ТН	Счетчик			каемой основной относительной погрешности,	Границы допускаемой относительной погрешности в рабочих условиях, $(\pm \delta)$ %
1	ВЛ-10кВ Л-1 от ПС 110кВ Широкополье, Оп.№1-07/35, ПКУ-10кВ	ТОЛ-СЭЩ-10 Кл.т. 0,5 75/5 Рег. № 32139-11 Фазы: A; B; C	ЗНОЛПМ Кл.т. 0,5 10000/√3/100/√3 Рег. № 35505-07 Фазы: A; B; C	ПСЧ-4ТМ.05МК.00 Кл.т. 0,5S/1,0 Рег. № 64450-16	HP DL380 G7 E	Активная Реактив- ная	1,3 2,5	3,5 6,0
Пред	Пределы допускаемой погрешности COEB ±5 с.							

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
 - 3 Погрешность в рабочих условиях указана для тока 5 % от $I_{\text{ном}}$; $\cos j = 0.8$ инд.
- 4 Допускается замена ТТ, ТН и счетчика на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики Наименование характеристики	Значение
Количество ИК	<u> </u>
	1
Нормальные условия:	
параметры сети:	o= 05 = 105
напряжение, % от Ином	от 95 до 105
ток, % от Іном	от 5 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Ином	от 90 до 110
ток, % от Іном	от 5 до 120
коэффициент мощности соѕф	от 0,5 до 1,0
частота, Гц	от 49,6 до 50,4
температура окружающей среды для ТТ и ТН, °С	от -45 до +40
температура окружающей среды в месте расположения счетчика,	
$^{\circ}\mathrm{C}$	от -15 до +40
температура окружающей среды в месте расположения сервера, °С	от +15 до +20
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчика:	
среднее время наработки на отказ, ч, не менее	165000
среднее время восстановления работоспособности, ч	2
для сервера:	
среднее время наработки на отказ, ч, не менее	70000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчика:	
тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	113
при отключении питания, лет, не менее	10
для сервера:	
хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5
H	- 7-

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере;
 - пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование: счетчика электрической энергии; промежуточных клеммников вторичных цепей напряжения; испытательной коробки; сервера.

- защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Tuosingu i Romisiekinoeth i iiii e Rijo				
Наименование	Обозначение	Количество, шт./экз.		
Трансформаторы тока	ТОЛ-СЭЩ-10	3		
Трансформаторы напряжения	ЗНОЛПМ	3		
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05МК	1		
Сервер	HP DL380 G7 E	1		
Методика поверки	МП ЭПР-129-2019	1		
Паспорт-формуляр	ТЛДК.411711.061.ЭД.ФО	1		

Поверка

осуществляется ПО документу МΠ ЭПР-129-2019 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) «Транссервисэнерго» «CKX»). Методика поверки», утвержденному ООО «ЭнергоПромРесурс» 15.01.2019 г.

Основные средства поверки:

- средства поверки в соответствии с нормативными документами на средства измерений, входящие в состав АИИС КУЭ;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (регистрационный номер в Федеральном информационном фонде 46656-11);

- термогигрометр CENTER (мод.315) (регистрационный номер в Федеральном информационном фонде 22129-09);
- барометр-анероид метеорологический БАММ-1 (регистрационный номер в Федеральном информационном фонде 5738-76);
- термометр стеклянный жидкостный вибростойкий авиационный ТП-6 (регистрационный номер в Федеральном информационном фонде 257-49);
- миллитесламетр портативный универсальный ТПУ (регистрационный номер в Федеральном информационном фонде 28134-04);
- анализатор количества и показателей качества электрической энергии AR.5L (регистрационный номер в Федеральном информационном фонде 44131-10);
- вольтамперфазометр ПАРМА ВАФ&-А (регистрационный номер в Федеральном информационном фонде 22029-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ АО «Транссервисэнерго» (ООО «СКХ»), свидетельство об аттестации № 147/RA.RU.312078/2019.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Транссервисэнерго» (ООО «СКХ»)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «Транссервисэнерго» (АО «Транссервисэнерго»)

ИНН 7710430593

Адрес: 119136, г. Москва, 3-й Сетуньский проезд, д. 10

Юридический адрес: 119296, г. Москва, Ленинский проспект, д. 64А

Телефон (факс): (495) 380-37-70

Web-сайт: tsenergo.ru E-mail: <u>chis@tsenergo.ru</u>

И	спы	тат	ель	ныі	H K	ентр

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2019 г.