ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Разрез «Виноградовский» (ПС № 32 «Караканская» 110/35/6 кВ)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Разрез «Виноградовский» (ПС № 32 «Караканская» 110/35/6 кВ) (далее по тексту — АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии.

Описание средства измерений

АИИС КУЭ представляет собой многоуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные каналы (ИИК) АИИС КУЭ состоят из трех уровней:

первый уровень – измерительно-информационные комплексы точек измерений (ИИК ТИ), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

второй уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий устройство сбора и передачи данных (УСПД) ЭКОМ-3000 регистрационный номер в Федеральном информационном фонде 17049-09 (Рег. № 17049-09), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы.

третий уровень – информационно-вычислительный комплекс (ИВК), включающий в каналообразующую аппаратуру, сервер АИИС КУЭ, устройство синхронизации системного времени, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (ПО).

АИИС КУЭ решает следующие задачи:

периодический (один раз в сутки) и/или по запросу автоматический сбор привязанных к шкале координированного времени UTC(SU) результатов измерений приращений электроэнергии с заданной дискретностью учета (30 минут);

периодический (один раз в сутки) и/или по запросу автоматический сбор данных о состоянии средств измерений во всех ИИК;

хранение результатов измерений и данных о состоянии средств измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;

периодический (один раз в сутки) и/или по запросу автоматический сбор служебных параметров (изменения параметров базы данных, пропадание напряжения, коррекция даты и системного времени);

передача результатов измерений в организации - участники оптового рынка электроэнергии в рамках согласованного регламента;

обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и τ π):

диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;

конфигурирование и настройка параметров АИИС КУЭ;

ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ); предоставление дистанционного доступа к компонентам АИИС КУЭ (по запросу).

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

УСПД один раз в 30 минут опрашивает счетчики и считывает 30-минутный профиль мощности. УСПД выступает в качестве промежуточного хранилища измерительной информации, журналов событий.

Сервер ИВК с периодичностью один раз в сутки считывает из УСПД 30-минутные профили мощности для каждого канала учета, а также журналы событий счетчиков и самого УСПД. Считанные данные записываются в базу данных.

При помощи ПО сервер ИВК осуществляет вычисление значений электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение, оформление справочных и отчетных документов.

Передача данных с уровня ИВК в АО «АТС», филиал ОАО «СО ЕЭС» «РДУ энергосистемы Кузбасса», филиал ОАО «МРСК Сибири» - «Кузбассэнерго-РЭС» и смежным субъектам ОРЭиМ производится посредством электронных документов (ХМL файлы) в формате 80020 в соответствии с регламентом АО «АТС» и соглашениями об информационном обмене между энергоснабжающей организацией (ЭСО) и смежными организациями.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для обеспечения единства измерений используется шкала координированного времени UTC(SU). В СОЕВ входят часы устройства синхронизации времени, счетчиков, УСПД, сервера АИИС КУЭ. В качестве устройства синхронизации времени используется встроенный в УСПД GPS-модуль. GPS-модуль осуществляет прием сигналов точного времени от ГЛОНАСС/GPS-приемника непрерывно.

Сравнение показаний часов УСПД и GPS-модуля происходит непрерывно. Синхронизация часов УСПД и GPS-модуля осуществляется независимо от показаний часов УСПД и GPS-модуля.

Сравнение показаний часов сервера АИИС КУЭ и УСПД происходит при каждом обращении к УСПД, но не реже одного раза в сутки. Синхронизация часов сервера АИИС КУЭ и УСПД осуществляется при расхождении показаний часов сервера АИИС КУЭ и УСПД на величину более чем ± 1 с.

Сравнение показаний часов счетчиков и УСПД происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация часов счетчиков и УСПД осуществляется при расхождении показаний часов счетчиков и УСПД на величину более чем ± 1 с.

Программное обеспечение

Идентификационные данные метрологически значимой части ПО представлены в таблице 1.

Таблица 1 - Идентификационные данные метрологически значимой части ПО

Идентификационные данные (признаки)	Значение
Наименование ПО	ПК «Энергосфера»
Идентификационное наименование ПО	pso_metr.dll
Номер версии (идентификационный номер) ПО	7.1
Цифровой идентификатор ПО (по MD5)	cb eb 6f 6c a6 93 18 be d9 76 e0 8a 2b b7 81 4b

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав ИИК АИИС КУЭ приведен в таблице 2, их основные метрологические и технические характеристики приведены в таблицах 3, 4.

Таблица 2 - Состав ИИК АИИС КУЭ

ИИК	Диспетчерское					
№ ИI	наименование ИИК	TT	TH	Счетчик	ИВКЭ	ИВК
1	ПС №32 «Караканская» 110/35/6 кВ, Ф.6-32-25	ТОЛ-НТ3-10-01 400/5 Кл.т. 0,5S Зав. № 38287; 38339; 38291; Рег. № 51679-12	НАМИТ-10-2 УХЛ2 6000/100 Кл.т. 0,5 Зав. № 0730; Рег. № 16687-07	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0 Зав. № 0818170269; Рег. № 36697-12	000 029(Server T40 S43
2	ПС №32 «Караканская» 110/35/6 кВ, Ф.6-32-32	ТОЛ-НТ3-10-01 400/5 Кл.т. 0,5S Зав. № 38343; 38306; 38390; Рег. № 51679-12	НАМИТ-10-2 УХЛ2 6000/100 Кл.т. 0,5 Зав. № 0729; Рег. № 16687-07	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0 Зав. № 0806177841; Рег. № 36697-12	38B. № 06 Per. № 1	Aquarius Ser

Примечания:

- 1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик.
- 2 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как неотъемлемая часть.

Таблица 3 - Метрологические характеристики ИИК АИИС КУЭ

таолица 5 - метрологические характеристики иниститу С					
	cosφ	Пределы допускаемой относительной погрешности ИИК при изме-			
Hayen MMV		рении активной электрической энергии в рабочих условиях			
Номер ИИК		применения d, %			
		$I_{1(2)}$ £ I_{M3M} < $I_{5\%}$	I_{5} %£ I_{M3M} < I_{20} %	I_{20} %£ I_{M3M} < I_{100} %	I _{100 %} £ I _{изм} £ I _{120 %}
1	2	3	4	5	6
	1,0	±2,4	±1,6	±1,5	±1,5
1 - 2	0,9	±2,8	±1,8	±1,6	±1,6
(TT 0,5; TH 0,5;	0,8	±3,2	±2,1	±1,8	±1,8
Счетчик 0,5S)	0,7	±3,8	±2,4	±2,0	±2,0
	0,5	±5,6	±3,3	±2,6	±2,6
		Пределы допускаемой относительной погрешности ИИК при изме-			
Howar MMV	aim.a	рении реактивной электрической энергии в рабочих условиях			
Номер ИИК	sinφ	применения d, %			
		$I_{1(2)}$ £ $I_{изм}$ < $I_{5\%}$	I_{5} %£ I_{M3M} < I_{20} %	I_{20} %£ I_{M3M} < I_{100} %	I _{100 %} £ I _{изм} £ I _{120 %}
1 - 2	0,44	±6,6	±4,9	±4,1	±4,1
	0,6	±5,1	±4,1	±3,6	±3,6
(TT 0,5; TH 0,5; Счетчик 1,0)	0,71	±4,4	±3,8	±3,4	±3,4
Счетчик 1,0)	0,87	±3,9	±3,5	±3,1	±3,1

Продолжение таблицы 3

продолжение тао.	лицы Э				
1	2	3	4	5	6
Пределы або	солютной	погрешности	синхронизации	часов компонент	ов СОЕВ АИИС
КУЭ к шкале координированного времени UTC(SU) ±5 с					
Примечания:					
1 Характеристики погрешности ИИК даны для измерения электроэнергии (получасовая).					
2 В качестве хар	актеристи	к относитель	ной погрешност	и указаны преде	лы допускаемой
относительной погрешности, соответствующие доверительной вероятности $P=0,95$.					

Таблица 4 – Основные технические характеристики ИИК

Таблица 4 – Основные технические характеристики ИИК						
Наименование характеристики	Значение					
Нормальные условия применения:						
параметры сети:						
напряжение, % от U _{ном}	от 98 до 102					
Tok, % ot I_{hom}	от 100 до 120					
частота, Гц	от 49,85 до 50,15					
коэффициент мощности cosj	0,9					
температура окружающей среды, °С	от +15 до +25					
относительная влажность воздуха при +25 °C, %	от 30 до 80					
Рабочие условия применения:						
параметры сети:						
напряжение, % от Uном	от 90 до 110					
ток, % от Іном	от 5 до 120					
коэффициент мощности	от 0,5 _{инд.} до 0,8 _{емк.} .					
частота, Гц	от 49,6 до 50,4					
температура окружающей среды для ТТ и ТН, °С	от -40 до +50					
температура окружающей среды для счетчиков, УСПД, °С	от +5 до +35					
относительная влажность воздуха при +25 °C, %	от 75 до 98					
Надежность применяемых в АИИС КУЭ компонентов:						
Счетчики:						
среднее время наработки на отказ, ч, не менее	165000					
среднее время восстановления работоспособности, ч	2					
УСПД:						
среднее время наработки на отказ, ч, не менее	75000					
среднее время восстановления работоспособности, ч	2					
Глубина хранения информации						
Счетчики:						
тридцатиминутный профиль нагрузки в двух направлениях, сут, не						
менее	113,7					
при отключении питания, лет, не менее	10					
УСПД:						
суточные данные о тридцатиминутных приращениях						
электропотребления по каждому каналу и электропотребление за						
месяц по каждому каналу, сут, не менее	45					
при отключении питания, лет, не менее	5					
Сервер:						
хранение результатов измерений и информации состояний средств						
измерений, лет, не менее	3,5					

Надежность системных решений:

В журналах событий счетчиков и УСПД фиксируются факты: параметрирования;

пропадания напряжения;

коррекция шкалы времени.

Защищенность применяемых компонентов:

наличие механической защиты от несанкционированного доступа и пломбирование:

счетчиков электроэнергии;

промежуточных клеммников вторичных цепей напряжения;

испытательной коробки;

УСПД.

Наличие защиты на программном уровне:

пароль на счетчиках электроэнергии;

пароль на УСПД;

пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Знак утверждения типа

наносится на титульный лист паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество	
Трансформаторы тока	ТОЛ-НТ3-10-01	6 шт.	
Трансформаторы напряжения	НАМИТ-10-2 УХЛ2	2 шт.	
Счетчики электрической энергии	СЭТ-4ТМ.03М.01	2 шт.	
многофункциональные	C31-41WI.03WI.01	2 Ш1.	
Устройство сбора и передачи данных	ЭКОМ-3000	1 шт.	
GSM-модем	Centerion MC52i	2 шт.	
GSM-модем	GSM-модем Teleofis RX108-R4	2 шт.	
Коммутатор сетевой	D-Link DES-1008D	1 шт.	
Сервер	Aquarius Server T40 S43	1 шт.	
Источник бесперебойного питания	WOW-700U	2 шт.	
Источник бесперебойного питания	APC SUA1000I	1 шт.	
Специализированное программное	ПО «Энергосфера»	1 шт.	
обеспечение	110 «Энергосфера»	1 ШТ.	
Паспорт – формуляр	85220938.422231.021.ФО	1 экз.	
Методика поверки	РТ-МП-5629-500-2018	1 экз.	

Поверка

осуществляется по документу РТ-МП-5629-500-2018 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Разрез «Виноградовский» (ПС № 32 «Караканская» 110/35/6 кВ). Методика поверки», утвержденному ФБУ «Ростест-Москва» 24.12.2018 г.

Основные средства поверки:

трансформаторов тока – по ГОСТ 8.217-2003;

трансформаторов напряжения – по ГОСТ 8.216-2011;

счетчиков СЭТ-4ТМ.03М — по методике поверки ИЛГШ.411152.145РЭ1, утвержденной ФБУ «Нижегородский ЦСМ» 04.05.2012 г.;

УСПД ЭКОМ 3000 – по документу ПБКМ.421459.003 МП, утвержденному ФГУП «ВНИИМС» в мае 2009 г.;

прибор для измерения электроэнергетических величин и показателей качества электрической энергии «Энергомонитор» 3.3T1, регистрационный номер в Федеральном информационном фонде 39952-08;

прибор комбинированный Testo 622, регистрационный номер в Федеральном информационном фонде 53505-13;

радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) регистрационный номер в Федеральном информационном фонде 46656-11.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде оттиска поверительного клейма и (или) наклейки.

Сведения о методиках (методах) измерений

приведены в документе «Методика (методы) измерений количества электрической энергии с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) Разрез «Виноградовский» (ПС № 32 «Караканская» 110/35/6 кВ).

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

Изготовитель

Закрытое акционерное общество «Сибэнергоучет» (ЗАО «Сибэнергоучет»)

ИНН 4205151544

Адрес: 650070, г. Кемерово, пер. Щегловский, д. 16, помещение 02

Юридический адрес: 650070, г. Кемерово, ул. Свободы, д. 25

Телефон: +7 (3842) 45-37-82 Факс: +7 (3842) 45-37-82

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект д. 31

Телефон: +7 (495) 544-00-00, +7 (499) 129-19-11

Факс: +7 (499) 124-99-96 E-mail: <u>info@rostest.ru</u>

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310639 от 16.04.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов