ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы кислорода оптические «Окси-ОМА»

Назначение средства измерений

Анализаторы кислорода оптические «Окси-ОМА» (далее – анализаторы) предназначены для измерений молярной доли кислорода в природном газе, инертных газах, водороде и в газообразном пропане.

Описание средства измерений

Принцип действия – люминесцентный. Метод основан на тушении кислородом фотолюминесценции молекул органических красителей.

Анализаторы представляют собой стационарные одноканальные приборы непрерывного действия.

Анализаторы выпускаются в двух исполнениях – «Окси-ОМА исп. 1» и «Окси-ОМА исп. 2», различающиеся диапазоном измерений, приведенными в таблице 3.

Анализаторы выполнены во взрывозащищённом исполнении и могут размещаться во взрывоопасных зонах.

Конструктивно анализатор состоит из электронно-вычислительного модуля с постоянно подключенным к нему измерительным модулем.

Электронно-вычислительный модуль представляет собой взрывонепроницаемую оболочку, внутри которой размещены: блок электропитания, блок вычисления и управления (БВУ), электронно-оптический блок датчика кислорода, два барьера искробезопасности и устройство отображения. Передняя панель электронно-вычислительного модуля представляет собой съемную крышку оболочки, на которой расположено смотровое окно устройства отображения. На нижней стенке взрывонепроницаемой оболочки могут быть установлены от четырех до семи вводов кабельных и до трех заглушек.

Измерительный модуль анализатора представляет собой единую конструкцию, которая состоит из газового тракта, выполненного из нержавеющей стали, и последовательно встроенных в него датчика температуры, датчика давления и волоконно-оптической линии связи чувствительного элемента с электронно-оптическим блоком датчика кислорода. Волоконно-оптическая линия связи защищена от механических повреждений гибким металлоруковом.

Аналоговые сигналы с датчиков давления и температуры поступают на барьер искрозащиты. После барьера аналоговый сигнал поступает на модуль АЦП блока вычисления и управления.

Датчик кислорода анализатора состоит из чувствительного элемента и электроннооптического блока. Сигнал из электронно-оптического блока посредствам протокола RS232 поступает на БВУ

БВУ обрабатывает цифровые сигналы с датчиков, производит расчет концентрации кислорода и выводит результат на устройстве отображения и на интерфейсы от 4 до 20 мА, RS 485 или Ethernet для связи с компьютером.

Общий вид анализаторов приведен на рисунке 1.

Рисунок 1 – Общий вид анализатора

Программное обеспечение

Анализаторы имеют встроенное программное обеспечение (ПО). ПО осуществляет следующие функции:

- обработку измерительной информации от чувствительного элемента, датчиков температуры и давления;
 - формирование аналогового и цифрового выходных сигналов;
- обеспечивает защиту и контроль метрологически значимых частей программы и сохраненных данных;
 - осуществляет идентификацию ПО;
- по протоколу RS 485 и Ethernet обеспечивает передачу сервисной и статусной информации о состоянии результатов измерений.
- контроль целостности программных кодов ПО, настроечных и калибровочных констант;

Влияние ПО анализаторов учтено при нормировании метрологических характеристик.

Анализаторы имеют защиту встроенного программного обеспечения от преднамеренных или непреднамеренных изменений. Уровень защиты – «средний» согласно Р 50.2.077-2014.

Идентификационные данные ПО анализаторов приведены в таблице 2.

Таблица 1 – Идентификационные данные встроенного ПО анализаторов

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	Окси-ОМА		
Номер версии (идентификационный номер) 1) ПО	0.1.0		
Цифровой идентификатор ПО (алгоритм)	-		
—————————————————————————————————————			

Метрологические и технические характеристики

Метрологические характеристики анализаторов приведены в таблицах 3 и 4.

Таблица 2 – Основные метрологические характеристики анализаторов

Tuomique 2 O o no brible met posterir reckite maparite prie trikir unum sur o pob				
Определяемый	Исполнение ¹⁾	Диапазон измерений	Пределы допускаемой	
компонент		молярной доли, млн $^{ ext{-}1}$	основной абсолютной	
			погрешности (Δ), млн ⁻¹	
Кислород (О2)	Окси-ОМА исп. 1	от 1,00 до 200	$\pm (0,15+0,05\cdot C_{BX})^{2)}$	
кислород (О2)	Окси-ОМА исп. 2	от 50 до 10000	$\pm (7,5+0,03\cdot C_{BX})$	

¹⁾ Исполнение анализатора, соответствующее диапазону измерений, определяется при заказе анализатора, устанавливается производителем и не может быть изменена пользователем в процессе эксплуатации.

 $^{2)}$ $C_{\text{вх}}^{1}$ – молярная доля определяемого компонента на входе анализатора, млн $^{-1}$.

Таблица 3 – Прочие метрологические характеристики анализаторов

Таолица 3 – прочие метрологические характеристики анализаторо	JB
Наименование характеристики	Значение
Предел допускаемой вариации показаний анализатора в долях от	
пределов допускаемой основной погрешности	0,5
Пределы допускаемой дополнительной погрешности от измене-	
ния температуры окружающей среды от +20 °C в пределах усло-	
вий эксплуатации на каждые 10 °C в долях от пределов допус-	
каемой основной погрешности	$\pm 0,2$
Пределы допускаемого изменения показаний за 24 часа непре-	
рывной работы, в долях от предела допускаемой основной по-	
грешности	$\pm 0,2$
Пределы допускаемой дополнительной погрешности от влияния	
изменения относительной влажности окружающей среды от 5	
до 60 % и от 60 до 95 %, в долях от предела допускаемой основ-	
ной погрешности	$\pm 0,5$
Пределы допускаемой дополнительной погрешности от влияния	
изменения атмосферного давления в пределах условий эксплуа-	
тации, на каждые 3,3 кПа, в долях от предела допускаемой ос-	
новной погрешности	$\pm 0,4$
Предел допускаемой дополнительной погрешности от влияния	
неизмеряемых компонентовв долях от предела допускаемой ос-	
новной погрешности	0,5
Нормальные условия измерений:	
- температура окружающего воздуха, °С	от +15 до +25
- относительная влажность окружающего воздуха, %, не более	80
- диапазон атмосферного давления, кПа	от 98,0 до 104,6

Таблица 4 – Основные технические характеристики анализаторов

<u> 1 аолица 4 — Основные технические характеристики анал</u>	1
Наименование характеристики	Значение
Время прогрева анализатора, мин, не более	15
Время установления показаний $T_{0,9}$, с, не более	60
Напряжение питания переменным током частотой	
(50±1) Гц, В	230±23
Потребляемая электрическая мощность, Вт, не более	100
Полный срок службы анализаторов, лет, не менее	12
Средняя наработка на отказ (при доверительной веро-	
ятности Р=0,95), ч	40000
Маркировка взрывозащиты	1Ex d op pr [ia Ga] IIB+H ₂ T4 Gb X
Степень защиты от внешних воздействий	IP65
Выходные интерфейсы	от 4 до 20 мA, RS 485, Ethernet
Условия эксплуатации анализаторов:	
- диапазон температуры окружающей среды, °С	от -20 до +50
- относительная влажность окружающей среды, %	от 25 до 95
- диапазон атмосферного давления, кПа	от 87,0 до 106,7
Содержание неизмеряемых компонентов, млн ⁻¹ , не бо-	
лее:	
- сероводород	50
- меркаптановая сера	50
- диоксид углерода	30000
Габаритные размеры, мм, не более:	
- электронно – вычислительный модуль:	
- длина	360
- ширина	470
- высота	515
- измерительный модуль:	
- длина	150
- ширина	350
- высота	200
Масса, кг, не более:	
- электронно – вычислительный модуль	32
- измерительный модуль	3
Диапазон объемного расхода газовой смеси на входе	
анализатора, дм ³ /мин	от 0,1 до 0,5

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации и на лицевую панель анализатора в виде наклейки.

Комплектность средства измерений

Таблица 5 – Комплектность анализаторов

Наименование	Обозначение	Кол-во
Анализатор кислорода оптический «Окси-ОМА»	Окси-ОМА	1 шт.
Руководство по эксплуатации	СНАГ.413324.002 РЭ	1 экз.
Методика поверки	МП-242-2233-2018	1 экз.
Паспорт	СНАГ.413324.002 ПС	1 экз.
Свидетельство о поверке	-	1 экз.

Продолжение таблицы 5

Наименование	Обозначение	Кол-во
Копия свидетельства о внесении в реестр СИ	-	1 экз.
Взрывозащищенные кабельные вводы ATELEX		
серий АК, АКР, АС, НК, НН, НС, РК, СК, ТК,		
ТКР. Руководство по эксплуатации	АЕКВ.152325.001 РЭ	1 экз.
«Устройства управления модульные серии МТ,		
МВ, МС с видом взрывозащиты «взрывонепро-		
ницаемая оболочка» УУМ ВО. ПРЭ	ТУ 3431-005-15232514-2015	1 экз.
Копия сертификата соответствия ТР ТС		
012/2011	RU C-RU.AA87.B.01232	1 экз.

Поверка

осуществляется по документу МП-242-2233-2018 «ГСИ. Анализаторы кислорода оптические «Окси-ОМА». Методика поверки», утвержденному ФГУП «ВНИИМ им. Д. И. Менделеева» 18 октября 2018 г.

Основные средства поверки:

- генератор газовых смесей ГГС модификаций ГГС-Р, ГГС-К, ГГС-03-03 (регистрационный номер в Федеральном Информационном Фонде по обеспечению единства измерений 62151-15);
 - стандартные образцы состава газовых смесей ГСО O₂/He 10531-2014.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на анализатор, как указано на рисунке 1, в виде наклейки, или наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к анализаторам кислорода оптическим «Окси-ОМА»

ГОСТ 8.578-2014 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия

СНАГ.413324.002 ТУ. Анализатор кислорода оптический «Окси-ОМА». Технические условия

Изготовитель

Общество с ограниченной ответственностью «Современные технологии измерения газа» (ООО «СовТИГаз»)

ИНН 7724375247

Адрес: 117405, г. Москва, ул. Кирпичные Выемки, д. 3 Телефон: 8 (495) 381-25-10, факс: 8 (495) 389-23-44

Web-сайт: <u>www.sovtigaz.ru</u> Email: <u>info@sovtigaz.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес:190005, г. Санкт-Петербург, Московский пр., д. 19 Телефон: 8 (812) 251-76-01, факс: 8 (812) 713-01-14

Web-сайт: http://www.vniim.ru

E-mail: <u>info@vniim.ru</u>.

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____» _____2019 г.