ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Импульсные характериографы интегральных схем ИХИС

Назначение средства измерений

Импульсные характериографы интегральных схем ИХИС (далее – характериографы) предназначены для измерения вольтамперных характеристик защитных диодов интегральных схем.

Описание средства измерений

Принцип действия характериографов основан на формировании последовательности импульсов тока с дискретно изменяющейся амплитудой силы тока и заданной длительностью, и измерении напряжения на *p-n*-переходе объекта во время протекания через него импульсов тока (на вершине импульса). Кроме того, выполняется измерение напряжения до и после импульса тока при протекании постоянного тока через *p-n*-переход объекта, что позволяет при известном температурном коэффициенте напряжения на *p-n*-переходе определить изменение температуры кристалла, вызванное протеканием через объект импульса тока. Импульсы тока формируются в однократном режиме и в режиме широтно-импульсной модуляции (ШИМ). Частотновременные параметры задаются кварцевым резонатором встроенного микроконтроллера. Микроконтроллер взаимодействует с внешним компьютером для приема из компьютера информационного пакета данных с параметрами измерения, формирования управляющих сигналов и параметров измерения, передачи результатов измерения в компьютер для последующей обработки.

Характериографы имеют два режима работы, отличающихся способом подключения интегральной схемы:

- протекание тока через интегральную схему по цепи от источника регулируемого напряжения к контакту «земля» характериографа;
- протекание тока через интегральную схему по цепи от источника фиксированного напряжения минус 5 В через источник регулируемого напряжения к контакту «земля» характериографа, при этом один из выводов интегральной схемы подключается к контакту «земля» через встроенный защитный диод.

Конструктивно характериографы выполнены в виде настольного моноблока в пластмассовом корпусе, вид передней и задней панели с указанием размещения знаков утверждения типа и знака поверки, схемы пломбирования от несанкционированного доступа, показаны на рисунках 1 и 2.

Программное обеспечение

Программное обеспечение LED Meter устанавливается на внешний компьютер и служит для управления режимами, задания параметров и функций формирования и измерения сигналов.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений «низкий» по Р 50.2.077-2014.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование	LED Meter
Номер версии (идентификационный номер)	v9.1 и выше

место нанесения знака утверждения типа и знака поверки

Рисунок 1 – Вид передней панели характериографов

место пломбирования (защитный стикер)

Рисунок 2 – Вид задней панели характериографов

Метрологические и технические характеристики

Метрологические и технические характеристики представлены в таблицах 2 и 3.

Таблина 2 – Метрологические характеристики

таолица 2 – метрологические характеристики	
Наименование характеристики	Значение
Амплитуда силы тока однократных и	0,15; 0,2; 0,3; 0,4; 0,5; 0,6; 0,8; 1,0;
ШИМ-импульсов, А	1,2; 1,4; 1,6; 1,8; 2,0; 2,25; 2,5; 2,75
Пределы допускаемой абсолютной погрешности	±(0,03·Im + 10); Im – числовое
установки амплитуды силы тока, мА	значение амплитуды силы тока в
	миллиамперах
Диапазон измерения постоянного напряжения, В	от 0 до 5
Пределы допускаемой абсолютной погрешности	$\pm (0.03 \cdot \text{U} + 0.01); \text{U} - \text{числовое}$
измерения постоянного напряжения, В	значение напряжения в вольтах
Длительность однократных импульсов тока, мс	от 1 до 10000
Период следования ШИМ-импульсов тока, мс	от 0,1 до 5
Частота модуляции ШИМ-импульсов тока, Гц	от 0,001 до 1000
Пределы допускаемой относительной погрешности	
установки длительности, периода и частоты	
модуляции импульсов тока, %	±2

Таблица 3 – Основные технические характеристики

тионици з сеновные техни неекие хириктернетики		
Параметры питания электросети		
частота, Гц	50 ±0,5	
напряжение, В	220 ±11	
Потребляемая мощность В·А, не более	100	
Габаритные размеры, мм		
длина	430	
ширина	205	
высота	130	
Масса, кг, не более	4,5	
Рабочие условия применения		
температура окружающего воздуха, °С	от 18 до 28	
относительная влажность воздуха, %	от 30 до 80	

Знак утверждения типа

наносится на лицевую панель корпуса характериографов в виде наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

представлена в таблице 4.

Таблица 4 – Комплектность характериографов

<u> </u>	
Наименование и обозначение	Кол-во
Импульсный характериограф интегральных схем ИХИС	1 шт.
Кабель сетевой	1 шт.
Кабель USB для подключения к порту компьютера	1 шт.
Кабель соединительный для подключения к объекту измерения	1 шт.
Резистор (1,00±0,05) Ом / 10 Вт	1 шт. по заказу
Руководство по эксплуатации ВТМЕ.26.51.43.120.011 РЭ	1 шт.
Методика поверки ВТМЕ.26.51.43.120.013 МП	1 шт.

Поверка

осуществляется по документу BTME.26.51.43.120.013 МП «ГСИ. Импульсные характериографы интегральных схем ИХИС. Методика поверки», утвержденному ЗАО «АКТИ-Мастер» 20.12.2018 г.

Основные средства поверки:

- мультиметр цифровой Keithley 2001, регистрационный номер 25787-08;
- осциллограф цифровой Tektronix TDS3012C, регистрационный номер 41693-09.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится лицевую панель корпуса характериографов в виде наклейки (место нанесения показано на рисунке 1) и/или на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к импульсным характериографам интегральных схем ИХИС

ГОСТ 8.027-2001. ГСИ. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы

ГОСТ 8.022-91. ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне $1 \cdot 10^{-16} \div 30 \text{ A}$

ГСИ. Государственная поверочная схема для средств измерений времени и частоты (приказ Росстандарта от 31.07.2018 г. № 1621)

Изготовитель

Общество с ограниченной ответственностью «Малое инновационное предприятие «Уникальные системы и технологии» (ООО «МИП УСТ»)

ИНН 7325110270

Адрес: 432027, г. Ульяновск, ул. Камышинская, д. 20/63, офис. 40

Тел. 8-902-123-97-63

E-mail: kat9romanenko@mail.ru

Испытательный центр

Закрытое акционерное общество «АКТИ-Мастер» (ЗАО «АКТИ-Мастер»)

Адрес: 127254, г. Москва, Огородный проезд, д. 5, стр. 5

Тел./факс: +7(495)926-71-85 E-mail: <u>post@actimaster.ru</u>

Аттестат аккредитации ЗАО «АКТИ-Мастер» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311824 от 14.10.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____ 2019 г.