ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики-регистраторы ВЗЛЕТ ТСР-М

Назначение средства измерений

Теплосчетчики-регистраторы ВЗЛЕТ ТСР-М предназначены для измерений тепловой энергии, объемного (массового) расхода, объема (массы), температуры, разности температур, давления теплоносителя в системах отопления, подпитки, холодного и горячего водоснабжения, температуры окружающего воздуха и интервалов времени.

Описание средства измерений

Принцип действия теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М основан на измерении количества и параметров теплоносителя в закрытых и открытых системах теплоснабжения и последующем определении на их основе количества тепловой энергии в соответствии с установленными алгоритмами.

В зависимости от комплекта поставки теплосчетчики-регистраторы ВЗЛЕТ ТСР-М состоят из следующих составных частей: преобразователей расхода, температуры, давления, тепловычислителя и кабелей связи.

В качестве преобразователей расхода применяются средства измерений, основанные на электромагнитном, ультразвуковом, вихревом и тахометрическом принципе действия с частотно-импульсными, цифровыми и токовыми выходами.

В качестве преобразователей температуры применяются платиновые термопреобразователи сопротивления с классом допуска A и B в соответствии с ГОСТ 6651-2009.

В качестве преобразователей давления применяются средства измерений с выходным токовым сигналом и соответствующих требованиям ГОСТ 22520-85.

Количество подключаемых преобразователей расхода, температуры, давления определяется в соответствии с характеристиками тепловычислителей, указанных в их описаниях типа.

В качестве тепловычислителей применяются средства измерений, измеряющие электрические сигналы силы постоянного тока, сопротивления, частоты. Тепловычислители производят измерение интервалов времени, вычисление, учет, индикацию, регистрацию, хранение и передачу значений параметров и количества теплоносителя, горячего и холодного водоснабжения, подпитки, тепловой энергии (мощности) в водяных и паровых системах теплоснабжения.

Теплосчетчики-регистраторы ВЗЛЕТ ТСР-М обеспечивают отображение, архивирование в энергонезависимой памяти результатов измерений (тепловой энергии, объемного (массового) расхода, объема (массы), температуры, разности температур, давления) в часовом, суточном и месячном архивах с объемом не менее 1488, 365 и 36 записей для каждого параметра соответственно и параметров функционирования (тип теплосистемы, внештатные ситуации, время работы) с объемом не менее 1200 записей для каждого параметра.

Преобразователи расхода, температуры, давления, тепловычислители, входящие в состав теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М являются средствами измерений утвержденного типа и могут использоваться в любом сочетании. Количество подключаемых первичных преобразователей зависит от применяемого тепловычислителя (теплосчетчик может обеспечить подключение до девяти преобразователей расхода, восьми преобразователей температуры и давления). Средства измерений, входящие в состав теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М представлены в таблице 1.

Таблица 1 – Типы и регистрационные номера средств измерений, входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М

Тепловычислители

Тепловычислители «ВЗЛЕТ ТСРВ» (27010-13)¹, тепловычислители СПТ961 (35477-12), тепловычислители СПТ962 (64150-16), тепловычислители СПТ963 (70097-17)

Преобразователи расхода²

Расходомеры-счетчики ультразвуковые ВЗЛЕТ МР (28363-14); ВЗЛЕТ ЭР общепромышленного назначения (20293-10); расходомерысчетчики электромагнитные «ВЗЛЕТ ЭР» модификация «Лайт М» (52856-13); ВЗЛЕТ ЭМ (30333-10) модификации ПРОФИ; расходомеры-счетчики электромагнитные «ВЗЛЕТ ППД» исполнения ППД-113, ППД-113*, ППД-213, ППД-Ех (60200-15); расходомерысчетчики электромагнитные «ВЗЛЕТ ТЭР» (39735-14); расходомеры SONO 1500 СТ (35209-09); расходомеры-счетчики жидкости ультразвуковые КАРАТ (44424-10); преобразователи расхода электромагнитные ЭМИР-ПРАМЕР-550 (27104-08); преобразователи расхода вихревые электромагнитные ВЭПС-Р (61872-15); счетчики холодной и горячей воды ВСХ, ВСХд, ВСГ, ВСГд, ВСТ (51794-12); счетчики холодной и горячей воды ВМХ и ВМГ (18312-03); счетчики холодной и горячей воды ВСХН, ВСХНд, ВСГН, ВСТН (40606-09), счетчики воды крыльчатые ВСХН, ВСХНд, ВСГН, ВСГНд, ВСТН (55115-13); счетчики воды турбинные ВСХН, ВСХНд, ВСГН, ВСТН (61401-15); счетчики воды крыльчатые ВСХН, ВСХНд, ВСГН, ВСГНд, ВСТН (61402-15); счетчики крыльчатые холодной и горячей воды СКБ (26343-08); расходомеры-счетчики холодной и горячей воды ВСЭ (32075-11); счетчики холодной и горячей воды MNK/MTK/MTW Водоучет (19728-03); счетчики-расходомеры ВРТК-2000 с преобразователями расхода ВПР (18437-05); Счетчики-расходомеры электромагнитные РМ-5 за исключением модификаций РМ-5-П, РМ-5-Э (20699-11); Преобразователи расхода электромагнитные ПРЭМ (17858-11); счетчики воды ТЭМ (24357-08); МастерФлоу за исключением класса Э (31001-12); расходомеры электромагнитные OPTIFLUX (60663-15); расходомеры электромагнитные Питерфлоу РС (46814-11); расходомеры электромагнитные 8700 (14660-12); счетчики-расходомеры электромагнитные ADMAG (модификации AXF, AXR, CA, AXW) (59435-14); расходомеры-счетчики электромагнитные Sitrans FM (61306-15); расходомеры-счетчики ультразвуковые Sitrans F US (35025-15); расходомеры-счетчики электромагнитные РСМ-05 модификации РСМ-05.03, РСМ-05.05, РСМ-05.07 (48755-11); расходомеры-счетчики жидкости ультразвуковые US800 (21142-11); расходомеры ультразвуковые UFM 3030, UFM 3030-300, UFM 500-030, UFM 500-300 (48218-11); счетчики тепловой энергии и воды ULTRAHEAT Т (51439-12); преобразователи расхода ультразвуковые ULTRAFLOW (20308-04); расходомеры жидкости ультразвуковые двухканальные УРЖ2КМ (23363-12); расходомеры-счетчики ультразвуковые OPTISONIC 3400 (57762-14); счетчики ультразвуковые СУР-97 (16860-07); преобразователи расхода вихревые электромагнитные ВПС (19650-10); преобразователи расхода вихреакустические Метран-300ПР (16098-09); преобразователи расхода вихревые «ЭМИС-ВИХРЬ-200 (ЭВ-200)» (42775-14); расходомеры-счетчики вихревые 8800 (14663-12); расходомеры-счетчики вихревые OPTISWIRL 4070 (52514-13); расходомеры-счетчики вихревые объемные YEWFLO DY (17675-09); расходомеры вихревые Prowirl (15202-14)

Преобразователи температуры

термопреобразователи сопротивления «ВЗЛЕТ ТПС» (21278-11); комплекты термометров сопротивления из платины технических разностных КТПТР-01, КТПТР-03, КТПТР-06, КТПТР-07, КТПТР-08 (46156-10); комплекты термометров сопротивления из платины технические разностные КТПТР-04, КТПТР-05/1 (39145-08); КТПТР-05, термометры сопротивления технические ИЗ платины $T\Pi T-1$, TΠT-17, TΠT-19. TΠT-21, ТПТ-25Р (46155-10); термопреобразователи Метран-2000 (38550-13);сопротивления преобразователи температуры Метран-280, Метран-280-Ех (23410-13); комплекты термопреобразователей сопротивления КТСП-Н (38878-17); комплекты термопреобразователей сопротивления платиновых КТС-Б (43096-15); термопреобразователи сопротивления платиновые ТСП и ТСП-К (65539-16); термометры сопротивления ТС-Б-Р (43287-09); комплекты термометров сопротивления ТЭМ-110 (40593-09); термометры сопротивления ТЭМ-100 (40592-09); термопреобразователи сопротивления платиновые ТСП-Н с диапазоном измеряемых температур от 0 до +160 °C (38959-12); термопреобразователи сопротивления из платины и меди ТС их чувствительные элементы ЧЭ (58808-14)

Преобразователи давления

Датчики давления Метран-75 базового исполнения (48186-11); датчики давления Метран-150 (32854-13); датчики давления малогабаритные Корунд с пределами допускаемой приведенной основной погрешностью ± 0.5 , $\pm 1 \%$ (47336-16); преобразователи давления измерительные Сапфир-22EM с пределами допускаемой приведенной основной погрешностью ±0,5% (46376-11); преобразователи давления измерительные Сапфир-22МП-ВН (33503-16); преобразователи давления измерительные СДВ за исключением преобразователей с пределами допускаемой основной погрешности $\pm 0.06\%$ от диапазона измерений (28313-11); датчики давления 415М (59550-14); преобразователи давления измерительные АИР-10 с пределами допускаемой основной приведенной погрешностью ± 0.25 , ± 0.4 , ± 0.5 , ± 0.6 % (31654-14); преобразователи давления измерительные АЙР-20/М2 (63044-16); преобразователи давления измерительные «ЭЛЕМЕР-АИР-30М» (67954-17); преобразователи давления ПДТВХ-1 с пределами допускаемой основной приведенной погрешностью ± 0.5 , ± 1.0 % (43646-10); датчики давления серий DMP, DMD, XMD, DS, DMK, x|act, DM, Baroli, DPS, XMP, HU, 17.600G, 17.609, 18.600G, 18.601G, 18.605G, 26.600G, 30.600G (55983-13); преобразователи давления измерительные DMP 3XX, DMP 4XX, DMD 3XX, DS 2XX, DS 4XX, DMK 3XX, DMK 4XX, XACT i, DM 10, DPS 2XX, DPS 3XX, DPS+, HMP 331, HU 300 (56795-14); преобразователи давления измерительные MBS 1700, MBS 1750, MBS 3000, MBS 3050, MBS 33, MBS 3200, MBS 3250, MBS 4510 (61533-15); преобразователи давления измерительные MBS 3300, MBS 3350, MBS 4003 (56237-14); преобразователи давления измерительные OBEH-ПД100И (56246-14); преобразователи (датчики) давления измерительные ЕЈ* для моделей, настроенных на верхний предел измерений, при корректировке нуля 1 раз в 6 месяцев (59868-15); преобразователи давления измерительные 3051 (14061-15); преобразователи давления измерительные 2088 с пределами допускаемой основной погрешностью $\pm 0.1\%$ (16825-08); датчики избыточного давления с электрическим выходным сигналом ДДМ-03Т-ДИ (55928-13); датчики давления тензорезистивные APZ, ALZ, AMZ, ASZ за исключением датчиков с пределами допускаемой основной погрешности $\pm 0.075\%$ (62292-15)

Примечание:

Интервал между поверками средств измерений, входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М, составляет не менее четырех лет.

¹ Применение в качестве тепловычислителя в составе теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М Тепловычислителей «ВЗЛЕТ ТСРВ» (27010-13) допускается только для открытых систем теплоснабжения;

 $^{^2}$ Для водяных систем теплоснабжения для измерения объема и объемного расхода теплоносителя применяются преобразователи расхода, удовлетворяющие условию $G_{max}/G_{min} \ge 50$, где G_{max} – максимальное нормированное значение расхода, измеряемое теплосчетчиком, м 3 /ч; G_{min} – минимальное нормированное значение расхода, измеряемое теплосчетчиком, м 3 /ч.

Общий вид теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М зависит от комплекта поставки. Общий вид средств измерений входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М определятся в соответствии с их описанием типа.

Общие виды и наименование типа средств измерений, входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М представлены на рисунках 1 – 4.

Пломбировка от несанкционированного доступа теплосчетчиков-регистраторов ВЗЛЕТ TCP-M осуществляется в соответствии с требованиями, указанными в описаниях типа средств измерений, входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ TCP-M.

СПТ96Х

Рисунок 1 — Общий вид и наименование типа тепловычислителей, входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ TCP-M

ВЗЛЕТ ЭМ

ВЗЛЕТ ТЭР

ULTRAHEAT T

ЭМИС-ПРАМЕР-550

ВЗЛЕТ ЭР Лайт М

ULTRAFLOW



Рисунок 2 – Общий вид и наименование типа преобразователей расхода, входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М

3015 DMP

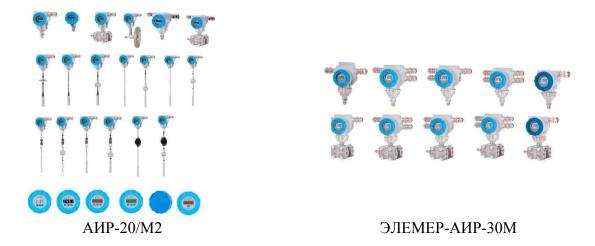


Рисунок 3 — Общий вид и наименование типа преобразователей давления, входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ TCP-M

Рисунок 4 — Общий вид и наименование типа преобразователей температуры, входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ TCP-M

Программное обеспечение

Программное обеспечение теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М встроенное.

Программное обеспечение предназначено для сбора и обработки поступающих данных от средств измерений параметров теплоносителя, выполнения математической обработки результатов измерений, обеспечения взаимодействия с периферийными устройствами, вычисления, хранения результатов вычислений, измеряемых параметров, настроек, уставок и архивирование данных.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные программного обеспечения теплосчетчиков-регистраторов ВЗЛЕТ TCP-M в зависимости от комплекта поставки приведены в таблице 2.

Таблица 2 – Илентификационные данные программного обеспечения

Таблица 2 – Идентификационные данные программного обеспечения			
Идентификационные данные (признаки)	Значение		
Тепловычислитель ТСРВ-024М			
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	76.30.03.29		
Цифровой идентификатор ПО	0xDEA0		
Тепловычислитель Т			
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	76.30.04.05		
Цифровой идентификатор ПО	0xA370		
Тепловычислитель	TCPB-025		
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	76.90.01.55		
Цифровой идентификатор ПО	0x8584		
Тепловычислитель Т	TCPB-026M		
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	65.00.01.08		
Цифровой идентификатор ПО	0xB861		
Тепловычислитель	TCPB-027		
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	76.40.00.13		
Цифровой идентификатор ПО	0xB3F3		
Тепловычислитель ТСРВ-033			
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	61.01.03.54		
Цифровой идентификатор ПО	0xDE02		
Тепловычислитель ТСРВ-034			
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	61.01.03.54		
Цифровой идентификатор ПО	0xDE02		
Тепловычислитель ТСР-041			
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	76.90.01.55		
Цифровой идентификатор ПО	0x8584		

Продолжение таблицы 2

продолжение таолицы 2			
Идентификационные данные (признаки)	Значение		
Тепловычислитель	TCPB-042		
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	66.00.04.00		
Цифровой идентификатор ПО	0x5294		
Тепловычислитель ТСРВ-043			
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	76.30.04.05		
Цифровой идентификатор ПО	0xA370		
Тепловычислитель ТСРВ-044			
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ		
Номер версии (идентификационный номер) ПО	67.00.00.00		
Цифровой идентификатор ПО	0x8150		
Тепловычислитель СПТ-961			
Идентификационное наименование ПО	_		
Номер версии (идентификационный номер) ПО	02		
Цифровой идентификатор ПО	2B12		
Тепловычислитель СПТ-962			
Идентификационное наименование ПО	_		
Номер версии (идентификационный номер) ПО	01.0.x.xx		
Цифровой идентификатор ПО	F409		
Тепловычислитель СПТ-963			
Идентификационное наименование ПО	-		
Номер версии (идентификационный номер) ПО	01.0.x.xx		
Цифровой идентификатор ПО	FFB3		

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений объемного (массового) расхода теплоносителя 1 , м 3 /ч (т/ч)	от 0,01 до 3000
Диапазон измерений объема (массы) теплоносителя ¹ , м ³ (т)	от 0 до 99999999
Диапазон измерений температуры теплоносителя ¹ , °C	от 0 до +300
Наименьшее значение разности температур теплоносителя ¹ , °C	3
Наибольшее значение разности температур теплоносителя ¹ , °C	+175
Диапазон измерений температуры окружающего воздуха ¹ , °C	от -50 до +100
Диапазон измерений давления теплоносителя ¹ , МПа	от 0 до 6,3
Диапазон измерений тепловой энергии ¹ , ГДж (Гкал)	от 0 до 99999999
Пределы допускаемой абсолютной погрешности теплосчетчиков при измерении температуры теплоносителя, °С	$\pm (0.6 + 0.004 \cdot t)$
Пределы допускаемой относительной погрешности	
теплосчетчиков при измерении объема и объемного расхода	
теплоносителя в водяных системах теплоснабжения ² , %	
для класса точности 1	$\pm (1.0 + 0.01 \cdot G_{\text{max}}/G)$
	но не более 3,5
– для класса точности 2	$\pm (2.0 + 0.02 \cdot G_{\text{max}}/G)$
	но не более 5

Продолжение таблицы 3

Наименование характеристики	Значение
Пределы допускаемой относительной погрешности	
теплосчетчиков при измерении массы и массового расхода	±3,0
теплоносителя в паровых системах теплоснабжения ^{3, 4} , %	
Пределы допускаемой приведенной погрешности	
теплосчетчиков при измерении давления, %:	
 в водяных системах теплоснабжения 	$\pm 2,0$
– в паровых системах теплоснабжения ³	±1,0
Пределы допускаемой относительной погрешности	в соответствие
теплосчетчиков при измерении тепловой энергии в водяных	с классом 1 и 2 по
системах теплоснабжения, %	ГОСТ Р 51649-2014 (по
	ГОСТ Р ЕН 1434-2011)
Пределы допускаемой относительной погрешности	
теплосчетчиков при измерении тепловой энергии в паровых	
системах теплоснабжения ³ , %:	
– в диапазоне расхода пара от 10 до 30 %	±5,0
– в диапазоне расхода пара от 30 до 100 %	±4,0
Пределы допускаемой относительной погрешности	
теплосчетчиков при измерении, индикации, регистрации,	± 0.01
хранении и передаче измеренных значений времени работы, %	

Примененные сокращения:

t – температура измеряемой (окружающей) среды, °С;

 Δt – разность температуры измеряемой среды, °С;

 G_{max} — значение наибольшего расхода измеряемой среды, м³/ч;

G – значение измеренного расхода измеряемой среды, м³/ч;

 Δt_{min} — минимальное значение разности температур, °C.

Пределы допускаемой погрешности теплосчетчиков при измерении разности температур теплоносителя равны сумме пределов погрешности преобразователей температуры и тепловычислителя, входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М. Пределы допускаемой погрешности преобразователей температуры определяются в соответствии с их описанием типа и эксплуатационными документами и не превышают пределов $\pm (0.5 + 3 \cdot \Delta t_{min} / \Delta t)$. Пределы допускаемой погрешности тепловычислителей определяются в соответствии с его описанием типа и эксплуатационными документами.

- 1 диапазон измерений зависит от комплекта поставки, характеризуется метрологическими и техническими характеристиками средств измерений, входящих в состав теплосчетчика, указывается в паспорте теплосчетчика-регистратора ВЗЛЕТ ТСР-М и не превышает диапазона измерений, указанного в данной таблице.
- ² Пределы допускаемой относительной погрешности теплосчетчиков в открытых системах теплоснабжения определяются методиками измерений аттестованными в установленном порядке.
- в качестве теплоносителя в паровых системах теплоснабжения применяется перегретый пар;
- теплосчетчики должны обеспечивать измерение массы перегретого пара с относительной погрешностью не более ± 3 % в диапазоне расхода пара от 10 до 100 %.

Таблица 4 – Основные технические характеристики

Наименование характеристики	Значение
Измеряемая среда	пар, вода
Параметры электрического питания:	
 напряжение переменного тока, В 	от 187 до 242
 частота переменного тока, Гц 	50 ± 1
 напряжение постоянного тока, В 	3,6; 12; 24; 36
Габаритные размеры, мм, не более	_1
Масса, кг, не более	_1
Потребляемая мощность, Вт, не более	50
Условия эксплуатации ² (тепловычислителей):	
 температуры окружающей среды, °С 	от +5 до +50
 относительная влажность при температуре 	
окружающей среды плюс 35 °C, не более	80
– атмосферное давление, кПа	от 84 до 106,7
Средний срок службы, лет	12

¹ – габаритные размеры и масса средств измерений, входящих в состав теплосчетчиковрегистраторов ВЗЛЕТ ТСР-М указаны в их описаниях типа;

Знак утверждения типа

наносится на лицевую панель тепловычислителя теплосчетчика методом предусмотренным изготовителем, а также на титульные листы руководства по эксплуатации и паспорта типографским способом.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество
Теплосчетчик-регистратор в составе:	ВЗЛЕТ ТСР-М	1 шт.
– тепловычислитель	_*	_*
 преобразователь расхода 	_*	_*
 преобразователь температуры 	_*	_*
 преобразователь давления 	_*	_*
Паспорт	В76.00-00.00 ПС	1 экз.
Руководство по эксплуатации	В76.00-00.00 РЭ	1 экз.
Методика поверки	МП 0864-1-2018	1 экз.
П		

Примечание:

Поверка

осуществляется по документу МП 0864-1-2018 «Инструкция. ГСИ. Теплосчетчики-регистраторы ВЗЛЕТ ТСР-М. Методика поверки», утвержденному ФГУП «ВНИИР» 10 октября 2018 г.

² – условия эксплуатации средств измерений, входящих в состав теплосчетчика, за исключением тепловычислителей указаны в их описаниях типа.

^{* –} тип, типоразмер и количество преобразователей расхода, температуры, давления определяются в соответствии с заказом.

Основные средства поверки:

– применяют средства поверки в соответствии с описанием типа, являющимся обязательным приложением к свидетельству об утверждения типа на средства измерений, входящих в состав теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в паспорт и (или) на свидетельство о поверке теплосчетчиков-регистраторов ВЗЛЕТ ТСР-М.

Сведения о методах измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования в теплосчетчикам-регистраторам ВЗЛЕТ TCP-M

Правила коммерческого учета тепловой энергии, теплоносителя, утвержденные постановлением Правительства Российской Федерации от 18 ноября 2013 г. № 1034

Методика осуществления коммерческого учета тепловой энергии, теплоносителя, утвержденная приказом Минстроя России от 17 марта 2014 г. № 99/пр (зарегистрирован Минюстом России 12 сентября 2014 г., регистрационный № 34040)

ГОСТ Р 51649-2014. Теплосчетчики для водяных систем теплоснабжения. Общие технические условия

ГОСТ Р ЕН 1434-1-2011. Теплосчетчики. Часть 1. Общие требования

ТУ 4218-076-44327050-2013 (В76.00-00.00 ТУ). Теплосчетчики-регистраторы ВЗЛЕТ ТСР-М. Технические условия

Изготовители

Акционерное общество «Взлет» (АО «Взлет»)

ИНН 7826013976

Адрес: 198097, г. Санкт-Петербург, ул. Трефолева, д. 2, лит. БМ

Телефон: 8 (800) 333-888-7, факс: 8 (812) 499-07-38

Web-сайт: http://www.vzljot.ru

E-mail: mail@vzljot.ru

Общество с ограниченной ответственностью «Завод Взлет» (ООО «Завод Взлет»)

ИНН 7805685092

Адрес: 198097, г. Санкт-Петербург, ул. Трефолева, д. 2, лит. БМ

Юридический адрес: 198097, г. Санкт-Петербург, ул. Трефолева, д. 2, лит. БМ, помещение 2-Н каб. 413

Телефон: 8 (812) 499-07-11 Web-сайт: http://www.vzljot.ru

E-mail: mail@vzljot.ru

Общество с ограниченной ответственностью «Центр Технического Аудита» (ООО «ЦТА»)

ИНН 7838319052

Адрес: 198097, г. Санкт-Петербург, ул. Трефолева, д.2, лит. БМ

Юридический адрес: 198097, г. Санкт-Петербург, ул.Трефолева, д.2, лит. БМ, помещение 2-Н, каб.416

Телефон: 8 (800) 333-888-7, факс: 8 (812) 499-07-38

Web-сайт: http://www.vzljot.ru

E-mail: mail@vzljot.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт расходометрии» (ФГУП «ВНИИР»)

Адрес: 420088, г. Казань, ул. 2-ая Азинская, д. 7 «а» Телефон: 8 (843) 272-70-62, факс: 8 (843) 272-00-32

E-mail: office@vniir.org Web-сайт: www.vniir.org

Аттестат аккредитации ФГУП «ВНИИР» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310592 от 24.02.2015 г.

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Кемеровской области»

(ФБУ «Кемеровский ЦСМ»)

Адрес: 650991, Кемеровская область, г. Кемерово, ул. Дворцовая, д.2

Телефон: 8 (3842) 36-43-89, факс: 8 (3842) 75-88-66

Web-сайт: www. kmrcsm.ru E-mail: kemcsm@kmrcsm.ru

Аттестат аккредитации ФБУ «Кемеровский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312319 от 10.10.2017 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____ 2019 г.