ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы цифровой противоразгонной защиты 6300 SIS

Назначение средства измерений

Системы цифровой противоразгонной защиты 6300 SIS (далее – системы) предназначены для измерений частоты следования импульсов, контроля скорости вращения и направления вращения валов различного оборудования.

Описание средства измерений

Принцип действия систем основан на измерении частоты следования импульсов выходного сигнала первичных преобразователей, преобразовании в значение скорости вращения и отображении измеренных значений на ЖК-дисплее с выдачей пропорциональных сигналов в виде унифицированных аналоговых сигналов постоянного тока, определении по измеренным сигналам направления вращения вала, а также формировании сигналов управления внешними устройствами и передаче информации на компьютеры.

Конструктивно системы выполнены в виде трех модулей А6370D и/или А6370D/DР (модификация с интерфейсом profibus) с микроконтроллерным управлением, представляющих собой три измерительных канала, размещенных в 19-дюймовом шасси с задней панелью, обеспечивающей электрические соединения между модулями. Каждый из модулей (измерительных каналов) осуществляет измерение и преобразование сигналов первичных преобразователей, а также обеспечивает их питание постоянным напряжением. В качестве первичных измерительных преобразователей используются преобразователи вихретоковые РR64xx/... (ГР № 40057-14), состоящие из конвертеров сигнала и вихретоковых датчиков. Соединение модулей позволяет выполнять сравнение измеренных значений и оценивать состояние модулей.

Каждый измерительный канал системы имеет два гальванически развязанных токовых выхода - унифицированных сигналов постоянного тока диапазоном (0-20) мА или (4-20) мА, три импульсных выхода, четыре дискретных входа и семь дискретных программируемых выходов.

Общий вид системы, а также схема пломбировки от несанкционированного доступа представлены на рисунке 1.

Рисунок 1 - Общий вид системы, схема пломбировки от несанкционированного доступа

Программное обеспечение

Системы имеют встроенное программное обеспечение (ПО), представляющее собой микропрограмму, устанавливаемую в энергонезависимую память модулей системы в производственном цикле на заводе-изготовителе. Встроенное программное обеспечение является метрологически значимым и не может быть изменено в процессе эксплуатации.

ПО используется для выполнения измерений, сбора, обработки, отображения и передачи результатов измерений на внешние устройства и носители информации.

Идентификационные данные программного обеспечения, используемые для передачи данных с модулей системы на внешние устройства, указаны в таблице 1.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	отсутствует	
Номер версии (идентификационный номер) ПО	не ниже 2.00	
Цифровой идентификатор ПО	отсутствует	

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений «высокий» в соответствии с документом Р 50.2.077-2014. При нормировании метрологических характеристик влияние ΠO учтено.

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

1 world 2 1/10 1 portorn 100 mile 1 mp with 5 morning		
Наименование характеристики	Значение	
Диапазон изменений частоты входного сигнала, Гц	от 0 до 20000	
Диапазон измерений и преобразований скорости вращения, об/мин	от 0 до 65535	
Диапазон воспроизведений токового сигнала, мА	от 0 до 20	
Пределы допускаемой приведенной к диапазону погрешности при измерении частоты входного сигнала и преобразовании в значение скорости, %	±0,03	
Пределы допускаемой приведенной к диапазону погрешности при воспроизведении токового сигнала, %	±1	

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Время реакции (быстродействие), мс, не более:	
- при измерении скорости:	
в режиме «1 × на оборот» при 3000 об/мин	48
в режиме «автоматический»	28
- при определении направления вращения	3 периода входного
	сигнала + 8
Параметры электрического питания:	
- напряжения питания постоянным током, В:	
- система	от 19,0 до 31,2
- датчики системы	24,5±1,5
Потребляемая мощность, В.А, не более	30

Продолжение таблицы 3

Наименование характеристики	Значение
Габаритные размеры, мм, не более:	
- ширина	482,6
- глубина	215,0
- высота	132,5
Масса, кг, не более	7,0
Условия эксплуатации:	
- температура окружающего воздуха, °С	от -20 до +65
- относительная влажность при температуре 35 °C, %	от 5 до 95
	без конденсации
Средний срок службы, лет	20
Средняя наработка на отказ, ч	175000

Знак утверждения типа

наносится на титульные листы эксплуатационной документации типографским способом, а также на наклейку, расположенную на передней панели системы.

Комплектность средства измерений

Таблица 4 – Комплектность систем

Наименование	Обозначение	Количество
Система цифровой противоразгонной защиты	6300 SIS	1 шт.
Комплект принадлежностей	-	1 комп.
Руководство пользователя	MHM-97442	1 экз.
Методика поверки	МП 55-233-2018	1 экз.

Поверка

осуществляется по документу МП 55-233-2018 «ГСИ. Системы цифровой противоразгонной защиты 6300 SIS. Методика поверки», утвержденному ФГУП «УНИИМ 06.09.2018 г.

Основные средства поверки:

Генератор импульсов Г5-60 (ГР № 5463-76);

Частотомер электронно-счетный Ч3-57 (ГР № 6081-77).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки в виде оттиска поверительного клейма наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к системам цифровой противоразгонной защиты 6300 SIS

Техническая документация изготовителя

Изготовитель

Компания «epro GmbH», Германия

Адрес: Jobkesweg 3, D 48599 Gronau, Германия Телефон: +49-2562-709-0; факс: +49-2562-709-401

Web-сайт: www.emerson.com

E-mail: mmssupport.epro@emerson.com

Заявитель

Общество с ограниченной ответственностью «Эмерсон»

(ООО «Эмерсон») ИНН 7705130530

Адрес: 115054, г. Москва, ул. Дубинская, д. 53, стр. 5 Телефон: +7 (495) 995-95-59; факс: +7 (495) 424-88-50

Web-сайт: <u>www.emerson.com</u> E-mail: <u>info.ru@emerson.com</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Уральский научноисследовательский институт метрологии»

Адрес: 620000, г. Екатеринбург, ул. Красноармейская, 4

Телефон/факс: +7 (343) 350-26-18

Web-сайт: uniim.ru E-mail: <u>uniim@uniim.ru</u>

Аттестат аккредитации ФГУП «УНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311373 от 10.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2019 г.