ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Сен-Гобен Строительная Продукция Рус» 2 очередь

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Сен-Гобен Строительная Продукция Рус» 2 очередь (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер на базе закрытой облачной системы VMware (сервер) с программным обеспечением (ПО) «АльфаЦЕНТР», устройство синхронизации времени, автоматизированные рабочие места (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на соответствующие GSM-модемы, далее по каналам связи, организованным по технологии CSD стандарта GSM, поступает на сервер. На сервере выполняется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов. От сервера информация передается на APM по каналу связи Ethernet.

Передача информации от уровня ИВК в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта оптового рынка электроэнергии (ОРЭ), в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом SMTP сети Internet в виде хml-файлов формата 80020 в соответствии с Приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

Результаты измерений электроэнергии передаются в целых числах кВт·ч и соотнесены с единым календарным временем.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы сервера, устройство синхронизации времени УСВ-2, синхронизирующее часы измерительных компонентов системы по сигналам проверки времени, получаемым от ГЛОНАСС/GPS-приемника.

Сравнение показаний часов сервера с УСВ-2 осуществляется 1 раз в час. Корректировка часов сервера производится при расхождении показаний часов сервера и УСВ-2 на величину более ± 1 с.

Сравнение показаний часов счетчиков с часами сервера осуществляется во время сеанса связи со счетчиками. Корректировка часов счетчиков производится при расхождении показаний часов счетчиков и часов сервера на величину более ±3 с, но не чаще 1 раза в сутки.

Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР», имеющее сертификат соответствия № ТП 031-15 от 12.03.2015 г. в Системе добровольной сертификации программного обеспечения средств измерений. Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 – Идентификационные данные ПО «АльфаЦЕНТР»

	1
Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ac_metrology.dll
Номер версии (идентификационный номер) ПО	не ниже 15.07
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54
Алгоритм вычисления цифрового идентификатора ПО	MD5

Метрологические и технические характеристики

Таблица 2 — Состав ИК АИИС КУЭ и их метрологические характеристики

10	олица 2 — Состав	TIK ATITIC KYON	их метрологическі	ие характеристики					1	
	Но Наименование мер точки измере- ИК ний	Измерительные компоненты				Вид элек-	Метрологические характеристики ИК			
M		TT	ТН	Счетчик	Устрой- ство синхро- низации времени	Сервер	триче- ской энер- гии	Границы допускаемой основной относительной погрешности, $(\pm\delta)$ %	Границы допускаемой относительной погрешности в рабочих условиях, $(\pm \delta)$ %	
1	РП-29 бкВ, РУ- 6кВ, СШ бкВ, яч.2904, ВЛ- 6кВ Ф.2904	ТЛП-10 Кл.т. 0,5S 400/5 Рег. № 30709-11 Фазы: А; С	НАЛИ-СЭЩ Кл.т. 0,5 6000/100	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0 Рег. № 36697-17		VMware	Актив- ная Реак- тивная	1,3 2,5	3,5 5,8	
2	РП-29 6кВ, РУ- 6кВ, СШ 6кВ, яч.2905, ВЛ- 6кВ Ф.2905	ТЛП-10 Кл.т. 0,5S 200/5 Рег. № 30709-11 Фазы: А; С	Рег. № 51621-12 Фазы: ABC	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0 Рег. № 36697-17	УСВ-2		Актив- ная Реак- тивная	1,3 2,5	3,5 5,8	
3	ТП-2 6кВ, РУ- 0,4кВ, СШ 0,4кВ, КЛ- 0,4кВ Ф.1	ТТЭ-30 Кл.т. 0,5 100/5 Рег. № 67761-17 Фазы: A; B; C	-	ПСЧ- 4ТМ.05МК.04 Кл.т. 0,5S/1,0 Рег. № 64450-16	- Per. № 41681-10		viviware	Актив- ная Реак- тивная	1,0 2,1	3,3 5,7
	2 Сек 10кВ, яч. Л-1015	200/5 Рег. № 9143-01 Фазы: А; С	НАМИ-10 Кл.т. 0,2 10000/100 Рег. № 11094-87 Фазы: АВС	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0 Рег. № 36697-17			Актив- ная Реак- тивная	1,1 2,2	3,3 5,7	
П	Пределы допускаемой погрешности COEB ±5 с.									

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
- 3 Погрешность в рабочих условиях для ИК №№ 1, 2 указана для тока 2 % от $I_{\text{ном}}$, для остальных ИК для тока 5 % от $I_{\text{ном}}$; $\cos j = 0.8$ инд.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена УСВ-2 на аналогичное утвержденного типа, а также замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Таблица 3 – Основные технические характеристики ИК	
Наименование характеристики	Значение
1	2
Количество ИК	4
Нормальные условия:	
параметры сети:	
напряжение, % от Uном	от 95 до 105
ток, % от Іном	
для ИК №№ 1, 2	от 1 до 120
для остальных ИК	от 5 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Uном	от 90 до 110
ток, % от Іном	
для ИК №№ 1, 2	от 1 до 120
для остальных ИК	от 5 до 120
коэффициент мощности соѕф	от 0,5 до 1,0
частота, Гц	от 49,6 до 50,4
температура окружающей среды для ТТ и ТН, °С	от -45 до +40
температура окружающей среды в месте расположения счетчиков,	
°C	от -5 до +40
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчиков типа СЭТ-4ТМ.03М:	
среднее время наработки на отказ, ч, не менее	220000
среднее время восстановления работоспособности, ч	2
для счетчиков типа ПСЧ-4ТМ.05МК:	
среднее время наработки на отказ, ч, не менее	165000
среднее время восстановления работоспособности, ч	2
для УСВ-2:	
среднее время наработки на отказ, ч, не менее	35000
среднее время восстановления работоспособности, ч	2

Продолжение таблицы 3

1	2
для сервера:	
среднее время наработки на отказ, ч, не менее	100000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков типа СЭТ-4ТМ.03М:	
тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	114
при отключении питания, лет, не менее	10
для счетчиков типа ПСЧ-4ТМ.05МК:	
тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	113
при отключении питания, лет, не менее	10
для сервера:	
хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

- журнал счетчика:

параметрирования;

пропадания напряжения;

коррекции времени в счетчике.

журнал сервера:

параметрирования;

пропадания напряжения;

коррекции времени в счетчике и сервере;

пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование: счетчика электрической энергии; промежуточных клеммников вторичных цепей напряжения; испытательной коробки.
- защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Шикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформаторы тока	ТЛП-10	4
Трансформаторы тока измерительные	TTЭ-30	3
Трансформаторы тока	ТЛК10-6	2
Трансформаторы напряжения трехфазной антирезонансной группы	НАЛИ-СЭЩ	1
Трансформаторы напряжения	НАМИ-10	1
Счетчики электрической энергии многофункциональные	CЭT-4TM.03M	3
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05МК	1
Устройства синхронизации времени	УСВ-2	1
Сервер на базе закрытой облачной системы	VMware	1
Методика поверки	МП ЭПР-136-2019	1
Формуляр	ЭНСТ.411711.162.02.ФО	1

Поверка

осуществляется МΠ ПО документу ЭПР-136-2019 «Система автоматизированная информационно-измерительная коммерческого электроэнергии (АИИС КУЭ) учета ООО «Сен-Гобен Строительная Продукция Pyc» 2 очередь. Методика поверки», утвержденному ООО «ЭнергоПромРесурс» 29.01.2019 г.

Основные средства поверки:

- средства поверки в соответствии с нормативными документами на средства измерений, входящие в состав АИИС КУЭ;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (регистрационный номер в Федеральном информационном фонде 46656-11);
- термогигрометр CENTER (мод.315) (регистрационный номер в Федеральном информационном фонде 22129-09);
- барометр-анероид метеорологический БАММ-1 (регистрационный номер в Федеральном информационном фонде 5738-76);
- термометр стеклянный жидкостный вибростойкий авиационный ТП-6 (регистрационный номер в Федеральном информационном фонде 257-49);
- миллитесламетр портативный универсальный ТПУ (регистрационный номер в Федеральном информационном фонде 28134-04);
- анализатор количества и показателей качества электрической энергии AR.5L (регистрационный номер в Федеральном информационном фонде 44131-10);
- вольтамперфазометр ПАРМА ВАФ®-А (регистрационный номер в Федеральном информационном фонде 22029-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ ООО «Сен-Гобен Строительная Продукция Рус» 2 очередь», свидетельство об аттестации № 153/RA.RU.312078/2019.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Сен-Гобен Строительная Продукция Рус» 2 очередь

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

ИНН 5024145974

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Испытательный центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « » 2019 г.